コード例 #1
0
 public function mlparamEvaluationAction()
 {
     $rows = $categories = $series = '';
     $must_wait = 'NO';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists('parameval', $_GET) || count($_GET) == 2 && array_key_exists('current_model', $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mlparameval');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $money = Utils::read_params('money', $where_configs);
         $paramEval = isset($_GET['parameval']) && $_GET['parameval'] != '' ? $_GET['parameval'] : 'maps';
         $minExecs = isset($_GET['minexecs']) ? $_GET['minexecs'] : -1;
         $minExecsFilter = "";
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         $where_configs = str_replace("`id_cluster`", "e.`id_cluster`", $where_configs);
         if ($minExecs > 0) {
             $minExecsFilter = "HAVING COUNT(*) > {$minExecs}";
         }
         $filter_execs = DBUtils::getFilterExecs();
         $options = Utils::getFilterOptions($db);
         $paramOptions = array();
         foreach ($options[$paramEval] as $option) {
             if ($paramEval == 'id_cluster') {
                 $paramOptions[] = $option['name'];
             } else {
                 if ($paramEval == 'comp') {
                     $paramOptions[] = Utils::getCompressionName($option[$paramEval]);
                 } else {
                     if ($paramEval == 'net') {
                         $paramOptions[] = Utils::getNetworkName($option[$paramEval]);
                     } else {
                         if ($paramEval == 'disk') {
                             $paramOptions[] = Utils::getDisksName($option[$paramEval]);
                         } else {
                             $paramOptions[] = $option[$paramEval];
                         }
                     }
                 }
             }
         }
         $benchOptions = $db->get_rows("SELECT DISTINCT bench FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE 1 {$filter_execs} {$where_configs} GROUP BY {$paramEval}, bench order by {$paramEval}");
         // get the result rows
         $query = "SELECT count(*) as count, {$paramEval}, e.id_exec, exec as conf, bench, " . "exe_time, avg(exe_time) avg_exe_time, min(exe_time) min_exe_time " . "from execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE 1 {$filter_execs} {$where_configs}" . "GROUP BY {$paramEval}, bench {$minExecsFilter} order by bench,{$paramEval}";
         $rows = $db->get_rows($query);
         if (!$rows) {
             throw new \Exception("No results for query!");
         }
         $arrayBenchs = array();
         foreach ($paramOptions as $param) {
             foreach ($benchOptions as $bench) {
                 $arrayBenchs[$bench['bench']][$param] = null;
                 $arrayBenchs[$bench['bench']][$param]['y'] = 0;
                 $arrayBenchs[$bench['bench']][$param]['count'] = 0;
             }
         }
         $series = array();
         $bench = '';
         foreach ($rows as $row) {
             if ($paramEval == 'comp') {
                 $row[$paramEval] = Utils::getCompressionName($row['comp']);
             } else {
                 if ($paramEval == 'id_cluster') {
                     $row[$paramEval] = Utils::getClusterName($row[$paramEval], $db);
                 } else {
                     if ($paramEval == 'net') {
                         $row[$paramEval] = Utils::getNetworkName($row['net']);
                     } else {
                         if ($paramEval == 'disk') {
                             $row[$paramEval] = Utils::getDisksName($row['disk']);
                         } else {
                             if ($paramEval == 'iofilebuf') {
                                 $row[$paramEval] /= 1024;
                             }
                         }
                     }
                 }
             }
             $arrayBenchs[$row['bench']][$row[$paramEval]]['y'] = round((int) $row['avg_exe_time'], 2);
             $arrayBenchs[$row['bench']][$row[$paramEval]]['count'] = (int) $row['count'];
         }
         // ----------------------------------------------------
         // Add predictions to the series
         // ----------------------------------------------------
         $jsonData = $jsonHeader = "[]";
         $instance = "";
         $arrayBenchs_pred = array();
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, true, $db);
         $model_info = MLUtils::generateModelInfo($param_names, $params, true, $db);
         $instances = MLUtils::generateInstances($param_names, $params, true, $db);
         // model for filling
         $possible_models = $possible_models_id = array();
         MLUtils::findMatchingModels($model_info, $possible_models, $possible_models_id, $dbml);
         $current_model = "";
         if (array_key_exists('current_model', $_GET) && in_array($_GET['current_model'], $possible_models_id)) {
             $current_model = $_GET['current_model'];
         }
         if (!empty($possible_models_id)) {
             if ($current_model == "") {
                 $query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE, p.id_learner FROM predictions p, learners l WHERE l.id_learner = p.id_learner AND p.id_learner IN ('" . implode("','", $possible_models_id) . "') AND predict_code > 0 ORDER BY MAE LIMIT 1";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $current_model = $row['id_learner'];
             }
             $config = $instance . '-' . $current_model . "-parameval";
             $query_cache = "SELECT count(*) as total FROM trees WHERE id_learner = '" . $current_model . "' AND model = '" . $model_info . "'";
             $is_cached_mysql = $dbml->query($query_cache);
             $tmp_result = $is_cached_mysql->fetch();
             $is_cached = $tmp_result['total'] > 0;
             $ret_data = null;
             if (!$is_cached) {
                 // Call to MLFindAttributes, to fetch data
                 $_GET['pass'] = 2;
                 $_GET['unseen'] = 1;
                 $_GET['current_model'] = $current_model;
                 $mlfa1 = new MLFindAttributesController();
                 $mlfa1->container = $this->container;
                 $ret_data = $mlfa1->mlfindattributesAction();
                 if ($ret_data == 1) {
                     $must_wait = "YES";
                     $jsonData = $jsonHeader = '[]';
                 } else {
                     $is_cached_mysql = $dbml->query($query_cache);
                     $tmp_result = $is_cached_mysql->fetch();
                     $is_cached = $tmp_result['total'] > 0;
                 }
             }
             if ($is_cached) {
                 $must_wait = 'NO';
                 $query = "SELECT count(*) as count, {$paramEval}, bench, exe_time, avg(pred_time) avg_pred_time, min(pred_time) min_pred_time " . "FROM predictions e WHERE e.id_learner = '" . $current_model . "' {$filter_execs} {$where_configs}" . "GROUP BY {$paramEval}, bench {$minExecsFilter} order by bench, {$paramEval}";
                 $result = $dbml->query($query);
                 // Initialize array
                 foreach ($paramOptions as $param) {
                     foreach ($benchOptions as $bench) {
                         $arrayBenchs_pred[$bench['bench'] . '_pred'][$param] = null;
                         $arrayBenchs_pred[$bench['bench'] . '_pred'][$param]['y'] = 0;
                         $arrayBenchs_pred[$bench['bench'] . '_pred'][$param]['count'] = 0;
                     }
                 }
                 foreach ($result as $row) {
                     $bench_n = $row['bench'] . '_pred';
                     $class = $row[$paramEval];
                     if ($paramEval == 'comp') {
                         $value = Utils::getCompressionName($class);
                     } else {
                         if ($paramEval == 'id_cluster') {
                             $value = Utils::getClusterName($class, $db);
                         } else {
                             if ($paramEval == 'net') {
                                 $value = Utils::getNetworkName($class);
                             } else {
                                 if ($paramEval == 'disk') {
                                     $value = Utils::getDisksName($class);
                                 } else {
                                     if ($paramEval == 'iofilebuf') {
                                         $value = $class / 1024;
                                     } else {
                                         $value = $class;
                                     }
                                 }
                             }
                         }
                     }
                     if (!in_array($value, $paramOptions)) {
                         $paramOptions[] = $value;
                         foreach ($benchOptions as $bench) {
                             $arrayBenchs_pred[$bench['bench'] . '_pred'][$value] = null;
                             $arrayBenchs_pred[$bench['bench'] . '_pred'][$value]['y'] = 0;
                             $arrayBenchs_pred[$bench['bench'] . '_pred'][$value]['count'] = 0;
                             $arrayBenchs[$bench['bench']][$value] = null;
                             $arrayBenchs[$bench['bench']][$value]['y'] = 0;
                             $arrayBenchs[$bench['bench']][$value]['count'] = 0;
                         }
                     }
                     $arrayBenchs_pred[$bench_n][$value]['y'] = (int) $row['avg_pred_time'];
                     $arrayBenchs_pred[$bench_n][$value]['count'] = (int) $row['count'];
                 }
             }
         }
         // ----------------------------------------------------
         // END - Add predictions to the series
         // ----------------------------------------------------
         asort($paramOptions);
         foreach ($arrayBenchs as $key => $arrayBench) {
             $caregories = '';
             $data_a = null;
             $data_p = null;
             foreach ($paramOptions as $param) {
                 if ($arrayBenchs[$key][$param]['count'] > 0 && empty($arrayBenchs_pred) || !empty($arrayBenchs_pred) && ($arrayBenchs_pred[$key . '_pred'][$param]['count'] > 0 || $arrayBenchs[$key][$param]['count'] > 0)) {
                     $data_a[] = $arrayBenchs[$key][$param];
                     if (!empty($arrayBenchs_pred)) {
                         $data_p[] = $arrayBenchs_pred[$key . '_pred'][$param];
                     }
                     $categories = $categories . "'{$param} " . Utils::getParamevalUnit($paramEval) . "',";
                     // FIXME - Redundant n times performed... don't care now
                 }
             }
             $series[] = array('name' => $key, 'data' => $data_a);
             if (!empty($arrayBenchs_pred)) {
                 $series[] = array('name' => $key . '_pred', 'data' => $data_p);
             }
         }
         $series = json_encode($series);
         if (!empty($arrayBenchs_pred)) {
             $colors = "['#7cb5ec','#9cd5fc','#434348','#636368','#90ed7d','#b0fd9d','#f7a35c','#f7c37c','#8085e9','#a0a5f9','#f15c80','#f17ca0','#e4d354','#f4f374','#8085e8','#a0a5f8','#8d4653','#ad6673','#91e8e1','#b1f8f1']";
         } else {
             $colors = "['#7cb5ec','#434348','#90ed7d','#f7a35c','#8085e9','#f15c80','#e4d354','#8085e8','#8d4653','#91e8e1']";
         }
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $series = $jsonHeader = $colors = '[]';
         $instance = $current_model = '';
         $possible_models = $possible_models_id = array();
         $must_wait = 'NO';
     }
     echo $this->container->getTwig()->render('mltemplate/mlconfigperf.html.twig', array('selected' => 'mlparameval', 'title' => 'Improvement of Hadoop Execution by SW and HW Configurations', 'categories' => $categories, 'series' => $series, 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'money' => $money, 'paramEval' => $paramEval, 'instance' => $instance, 'models' => '<li>' . implode('</li><li>', $possible_models) . '</li>', 'models_id' => $possible_models_id, 'current_model' => $current_model, 'gammacolors' => $colors, 'must_wait' => $must_wait, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #2
0
 public function mlminconfigsAction()
 {
     $jsonData = array();
     $message = $instance = '';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists('learn', $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mlminconfigs');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $learn_param = array_key_exists('learn', $_GET) ? $_GET['learn'] : 'regtree';
         $unrestricted = array_key_exists('umodel', $_GET) && $_GET['umodel'] == 1;
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("`id_cluster`", "e.`id_cluster`", $where_configs);
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, $unrestricted, $db);
         // Used only as indicator in the WEB
         $model_info = MLUtils::generateModelInfo($param_names, $params, $unrestricted, $db);
         $config = $model_info . ' ' . $learn_param . ' ' . ($unrestricted ? 'U' : 'R') . ' minconfs';
         $learn_options = 'saveall=' . md5($config);
         if ($learn_param == 'regtree') {
             $learn_method = 'aloja_regtree';
             $learn_options .= ':prange=0,20000';
         } else {
             if ($learn_param == 'nneighbours') {
                 $learn_method = 'aloja_nneighbors';
                 $learn_options .= ':kparam=3';
             } else {
                 if ($learn_param == 'nnet') {
                     $learn_method = 'aloja_nnet';
                     $learn_options .= ':prange=0,20000';
                 } else {
                     if ($learn_param == 'polyreg') {
                         $learn_method = 'aloja_linreg';
                         $learn_options .= ':ppoly=3:prange=0,20000';
                     }
                 }
             }
         }
         $cache_ds = getcwd() . '/cache/query/' . md5($config) . '-cache.csv';
         $is_cached_mysql = $dbml->query("SELECT count(*) as num FROM learners WHERE id_learner = '" . md5($config) . "'");
         $tmp_result = $is_cached_mysql->fetch();
         $is_cached = $tmp_result['num'] > 0;
         $is_cached_mysql = $dbml->query("SELECT count(*) as num FROM minconfigs WHERE id_minconfigs = '" . md5($config . 'R') . "' AND id_learner = '" . md5($config) . "'");
         $tmp_result = $is_cached_mysql->fetch();
         $is_cached = $is_cached && $tmp_result['num'] > 0;
         $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
         $finished_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.fin');
         // Create Models and Predictions
         if (!$is_cached && !$in_process && !$finished_process) {
             // get headers for csv
             $header_names = array('id_exec' => 'ID', 'bench' => 'Benchmark', 'exe_time' => 'Exe.Time', 'net' => 'Net', 'disk' => 'Disk', 'maps' => 'Maps', 'iosf' => 'IO.SFac', 'replication' => 'Rep', 'iofilebuf' => 'IO.FBuf', 'comp' => 'Comp', 'blk_size' => 'Blk.size', 'e.id_cluster' => 'Cluster', 'name' => 'Cl.Name', 'datanodes' => 'Datanodes', 'headnodes' => 'Headnodes', 'vm_OS' => 'VM.OS', 'vm_cores' => 'VM.Cores', 'vm_RAM' => 'VM.RAM', 'provider' => 'Provider', 'vm_size' => 'VM.Size', 'type' => 'Type', 'bench_type' => 'Bench.Type');
             $headers = array_keys($header_names);
             $names = array_values($header_names);
             // dump the result to csv
             $query = "SELECT " . implode(",", $headers) . " FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND bench_type = 'HiBench' AND bench NOT LIKE 'prep_%' AND e.exe_time > 100" . $where_configs . ";";
             $rows = $db->get_rows($query);
             if (empty($rows)) {
                 throw new \Exception('No data matches with your critteria.');
             }
             $fp = fopen($cache_ds, 'w');
             fputcsv($fp, $names, ',', '"');
             foreach ($rows as $row) {
                 $row['id_cluster'] = "Cl" . $row['id_cluster'];
                 // Cluster is numerically codified...
                 $row['comp'] = "Cmp" . $row['comp'];
                 // Compression is numerically codified...
                 fputcsv($fp, array_values($row), ',', '"');
             }
             // run the R processor
             exec('cd ' . getcwd() . '/cache/query; touch ' . md5($config) . '.lock');
             $command = getcwd() . '/resources/queue -c "cd ' . getcwd() . '/cache/query; ../../resources/aloja_cli.r -d ' . $cache_ds . ' -m ' . $learn_method . ' -p ' . $learn_options . ' >/dev/null 2>&1 && ';
             $command = $command . '../../resources/aloja_cli.r -m aloja_minimal_instances -l ' . md5($config) . ' -p saveall=' . md5($config . 'R') . ':kmax=200 >/dev/null 2>&1; rm -f ' . md5($config) . '.lock; touch ' . md5($config) . '.fin" >/dev/null 2>&1 &';
             exec($command);
         }
         $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
         if ($in_process) {
             $jsonData = $jsonHeader = $configs = '[]';
             $must_wait = "YES";
             $max_x = $max_y = 0;
         } else {
             $must_wait = "NO";
             // Save learning model to DB, with predictions
             $is_cached_mysql = $dbml->query("SELECT id_learner FROM learners WHERE id_learner = '" . md5($config) . "'");
             $tmp_result = $is_cached_mysql->fetch();
             if ($tmp_result['id_learner'] != md5($config)) {
                 // register model to DB
                 $query = "INSERT INTO learners (id_learner,instance,model,algorithm)";
                 $query = $query . " VALUES ('" . md5($config) . "','" . $instance . "','" . substr($model_info, 1) . "','" . $learn_param . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving model into DB');
                 }
                 // read results of the CSV and dump to DB
                 foreach (array("tt", "tv", "tr") as $value) {
                     if (($handle = fopen(getcwd() . '/cache/query/' . md5($config) . '-' . $value . '.csv', 'r')) !== FALSE) {
                         $header = fgetcsv($handle, 1000, ",");
                         $token = 0;
                         $query = "INSERT INTO predictions (id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,name,datanodes,headnodes,vm_OS,vm_cores,vm_RAM,provider,vm_size,type,bench_type,pred_time,id_learner,instance,predict_code) VALUES ";
                         while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {
                             $specific_instance = implode(",", array_slice($data, 2, 19));
                             $specific_data = implode(",", $data);
                             $specific_data = preg_replace('/,Cmp(\\d+),/', ',${1},', $specific_data);
                             $specific_data = preg_replace('/,Cl(\\d+),/', ',${1},', $specific_data);
                             $specific_data = str_replace(",", "','", $specific_data);
                             $query_var = "SELECT count(*) as num FROM predictions WHERE instance = '" . $specific_instance . "' AND id_learner = '" . md5($config) . "'";
                             $result = $dbml->query($query_var);
                             $row = $result->fetch();
                             // Insert instance values
                             if ($row['num'] == 0) {
                                 if ($token != 0) {
                                     $query = $query . ",";
                                 }
                                 $token = 1;
                                 $query = $query . "('" . $specific_data . "','" . md5($config) . "','" . $specific_instance . "','" . ($value == 'tt' ? 3 : ($value == 'tv' ? 2 : 1)) . "') ";
                             }
                         }
                         if ($dbml->query($query) === FALSE) {
                             throw new \Exception('Error when saving into DB');
                         }
                         fclose($handle);
                     }
                 }
                 // Remove temporal files
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.csv');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.dat');
             }
             // Save minconfigs to DB, with props and centers
             $is_cached_mysql = $dbml->query("SELECT id_minconfigs FROM minconfigs WHERE id_minconfigs = '" . md5($config . 'R') . "'");
             $tmp_result = $is_cached_mysql->fetch();
             if ($tmp_result['id_minconfigs'] != md5($config . 'R')) {
                 // register minconfigs to DB
                 $query = "INSERT INTO minconfigs (id_minconfigs,id_learner,instance,model)";
                 $query = $query . " VALUES ('" . md5($config . 'R') . "','" . md5($config) . "','" . $instance . "','" . substr($model_info, 1) . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving minconfis into DB');
                 }
                 $clusters = array();
                 // Save results of the CSV - MAE or RAE
                 if (file_exists(getcwd() . '/cache/query/' . md5($config . 'R') . '-raes.csv')) {
                     $error_file = 'raes.csv';
                 } else {
                     $error_file = 'maes.csv';
                 }
                 $handle = fopen(getcwd() . '/cache/query/' . md5($config . 'R') . '-' . $error_file, 'r');
                 while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {
                     $cluster = (int) $data[0];
                     if ($error_file == 'raes.csv') {
                         $error_mae = 'NULL';
                         $error_rae = (double) $data[1];
                     }
                     if ($error_file == 'maes.csv') {
                         $error_mae = (double) $data[1];
                         $error_rae = 'NULL';
                     }
                     // register minconfigs_props to DB
                     $query = "INSERT INTO minconfigs_props (id_minconfigs,cluster,MAE,RAE)";
                     $query = $query . " VALUES ('" . md5($config . 'R') . "','" . $cluster . "','" . $error_mae . "','" . $error_rae . "');";
                     if ($dbml->query($query) === FALSE) {
                         throw new \Exception('Error when saving minconfis into DB');
                     }
                     $clusters[] = $cluster;
                 }
                 fclose($handle);
                 // Save results of the CSV - Configs
                 $handle_sizes = fopen(getcwd() . '/cache/query/' . md5($config . 'R') . '-sizes.csv', 'r');
                 foreach ($clusters as $cluster) {
                     // Get supports from sizes
                     $sizes = fgetcsv($handle_sizes, 1000, ",");
                     // Get clusters
                     $handle = fopen(getcwd() . '/cache/query/' . md5($config . 'R') . '-dsk' . $cluster . '.csv', 'r');
                     $header = fgetcsv($handle, 1000, ",");
                     $i = 0;
                     while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {
                         $subdata = array_slice($data, 0, 12);
                         $specific_data = implode(',', $subdata);
                         $specific_data = preg_replace('/,Cmp(\\d+),/', ',${1},', $specific_data);
                         $specific_data = preg_replace('/,Cl(\\d+),/', ',${1},', $specific_data);
                         $specific_data = preg_replace('/,Cl(\\d+)/', ',${1}', $specific_data);
                         $specific_data = str_replace(",", "','", $specific_data);
                         // register minconfigs_props to DB
                         $query = "INSERT INTO minconfigs_centers (id_minconfigs,cluster,id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,support)";
                         $query = $query . " VALUES ('" . md5($config . 'R') . "','" . $cluster . "','" . $specific_data . "','" . $sizes[$i++] . "');";
                         if ($dbml->query($query) === FALSE) {
                             throw new \Exception('Error when saving centers into DB');
                         }
                     }
                     fclose($handle);
                 }
                 fclose($handle_sizes);
                 // Store file model to DB
                 $filemodel = getcwd() . '/cache/query/' . md5($config) . '-object.rds';
                 $fp = fopen($filemodel, 'r');
                 $content = fread($fp, filesize($filemodel));
                 $content = addslashes($content);
                 fclose($fp);
                 $query = "INSERT INTO model_storage (id_hash,type,file) VALUES ('" . md5($config) . "','learner','" . $content . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving file model into DB');
                 }
                 $filemodel = getcwd() . '/cache/query/' . md5($config . 'R') . '-object.rds';
                 $fp = fopen($filemodel, 'r');
                 $content = fread($fp, filesize($filemodel));
                 $content = addslashes($content);
                 fclose($fp);
                 $query = "INSERT INTO model_storage (id_hash,type,file) VALUES ('" . md5($config . 'R') . "','minconf','" . $content . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving file minconf into DB');
                 }
                 // Remove temporal files
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config . 'R') . '*.csv');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config . 'R') . '*.rds');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.rds');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '.fin');
             }
             // Retrieve minconfig progression results from DB
             $header = "id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,support";
             $header_array = explode(",", $header);
             $last_y = 9000000000000000.0;
             $configs = '[';
             $query = "SELECT cluster, MAE, RAE FROM minconfigs_props WHERE id_minconfigs='" . md5($config . 'R') . "'";
             $result = $dbml->query($query);
             foreach ($result as $row) {
                 // Retrieve minconfig progression results from DB
                 if ((double) $row['MAE'] > 0) {
                     $error = (double) $row['MAE'];
                 } else {
                     $error = (double) $row['RAE'];
                 }
                 $cluster = (int) $row['cluster'];
                 $new_val = array();
                 $new_val['x'] = $cluster;
                 if ($error > $last_y) {
                     $new_val['y'] = $last_y;
                 } else {
                     $last_y = $new_val['y'] = $error;
                 }
                 $jsonData[] = $new_val;
                 // Retrieve minconfig centers from DB
                 $query_2 = "SELECT " . $header . " FROM minconfigs_centers WHERE id_minconfigs='" . md5($config . 'R') . "' AND cluster='" . $cluster . "'";
                 $result_2 = $dbml->query($query_2);
                 $jsonConfig = '[';
                 foreach ($result_2 as $row_2) {
                     $values = '';
                     foreach ($header_array as $ha) {
                         $values = $values . ($values != '' ? ',' : '') . '\'' . $row_2[$ha] . '\'';
                     }
                     $jsonConfig = $jsonConfig . ($jsonConfig != '[' ? ',' : '') . '[' . $values . ']';
                 }
                 $jsonConfig = $jsonConfig . ']';
                 $configs = $configs . ($configs != '[' ? ',' : '') . $jsonConfig;
             }
             $configs = $configs . ']';
             $jsonData = json_encode($jsonData);
             $jsonHeader = '[{title:""},{title:"Est.Time"},{title:"Benchmark"},{title:"Network"},{title:"Disk"},{title:"Maps"},{title:"IO.SF"},{title:"Replicas"},{title:"IO.FBuf"},{title:"Compression"},{title:"Blk.Size"},{title:"Main Ref. Cluster"},{title:"Support"}]';
             $is_cached_mysql = $dbml->query("SELECT MAX(cluster) as mcluster, MAX(MAE) as mmae, MAX(RAE) as mrae FROM minconfigs_props WHERE id_minconfigs='" . md5($config . 'R') . "'");
             $tmp_result = $is_cached_mysql->fetch();
             $max_x = (double) $tmp_result['mmae'] > 0 ? (double) $tmp_result['mmae'] : (double) $tmp_result['mrae'];
             $max_y = (double) $tmp_result['mcluster'];
         }
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonData = $jsonHeader = $configs = '[]';
         $max_x = $max_y = 0;
         $must_wait = 'NO';
     }
     echo $this->container->getTwig()->render('mltemplate/mlminconfigs.html.twig', array('selected' => 'mlminconfigs', 'jsonData' => $jsonData, 'jsonHeader' => $jsonHeader, 'configs' => $configs, 'max_p' => min(array($max_x, $max_y)), 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'message' => $message, 'instance' => $instance, 'id_learner' => md5($config), 'id_minconf' => md5($config . 'R'), 'model_info' => $model_info, 'unrestricted' => $unrestricted, 'learn' => $learn_param, 'must_wait' => $must_wait, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #3
0
 public function mlfindattributesAction()
 {
     $instance = $message = $tree_descriptor = $model_html = '';
     $must_wait = 'NO';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists("current_model", $_GET) || count($_GET) == 2 && array_key_exists("dump", $_GET) || count($_GET) == 2 && array_key_exists("tree", $_GET) || count($_GET) == 2 && array_key_exists("pass", $_GET) || count($_GET) == 3 && array_key_exists("dump", $_GET) && array_key_exists("current_model", $_GET) || count($_GET) == 3 && array_key_exists("tree", $_GET) && array_key_exists("current_model", $_GET) || count($_GET) == 3 && array_key_exists("tree", $_GET) && array_key_exists("current_model", $_GET) || count($_GET) == 3 && array_key_exists("pass", $_GET) && array_key_exists("current_model", $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mlfindattributes');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $unseen = array_key_exists('unseen', $_GET) && $_GET['unseen'] == 1;
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         $jsonData = $jsonHeader = "[]";
         $mae = $rae = 0;
         // compose instance
         $model_info = MLUtils::generateModelInfo($param_names, $params, $unseen, $db);
         $instance = MLUtils::generateSimpleInstance($param_names, $params, $unseen, $db);
         $instances = MLUtils::generateInstances($param_names, $params, $unseen, $db);
         // Model for filling
         MLUtils::findMatchingModels($model_info, $possible_models, $possible_models_id, $dbml);
         $current_model = "";
         if (array_key_exists('current_model', $_GET) && !is_null($possible_models_id) && in_array($_GET['current_model'], $possible_models_id)) {
             $current_model = $_GET['current_model'];
         }
         if (!empty($possible_models_id)) {
             $other_models = array();
             $result = $dbml->query("SELECT id_learner FROM learners WHERE id_learner NOT IN ('" . implode("','", $possible_models_id) . "')");
             foreach ($result as $row) {
                 $other_models[] = $row['id_learner'];
             }
             $result = $dbml->query("SELECT id_learner, model, algorithm, CASE WHEN `id_learner` IN ('" . implode("','", $possible_models_id) . "') THEN 'COMPATIBLE' ELSE 'NOT MATCHED' END AS compatible FROM learners");
             foreach ($result as $row) {
                 $model_html = $model_html . "<li>" . $row['id_learner'] . " => " . $row['algorithm'] . " : " . $row['compatible'] . " : " . $row['model'] . "</li>";
             }
             if ($current_model == "") {
                 $query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE, p.id_learner FROM predictions p, learners l WHERE l.id_learner = p.id_learner AND p.id_learner IN ('" . implode("','", $possible_models_id) . "') AND predict_code > 0 ORDER BY MAE LIMIT 1";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $current_model = $row['id_learner'];
             }
             $config = $instance . '-' . $current_model . '-' . ($unseen ? 'U' : 'R');
             $is_cached_mysql = $dbml->query("SELECT count(*) as total FROM trees WHERE id_findattrs = '" . md5($config) . "'");
             $tmp_result = $is_cached_mysql->fetch();
             $is_cached = $tmp_result['total'] > 0;
             $tmp_file = md5($config) . '.tmp';
             $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
             $finished_process = $in_process && (int) shell_exec('ls ' . getcwd() . '/cache/query/' . md5($config) . '-*.lock | wc -w ') == count($instances);
             if (!$in_process && !$finished_process && !$is_cached) {
                 // Retrieve file model from DB
                 $query = "SELECT file FROM model_storage WHERE id_hash='" . $current_model . "' AND type='learner';";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $content = $row['file'];
                 $filemodel = getcwd() . '/cache/query/' . $current_model . '-object.rds';
                 $fp = fopen($filemodel, 'w');
                 fwrite($fp, $content);
                 fclose($fp);
                 // Run the predictor
                 exec('cd ' . getcwd() . '/cache/query ; touch ' . md5($config) . '.lock ; rm -f ' . $tmp_file);
                 $count = 1;
                 foreach ($instances as $inst) {
                     exec(getcwd() . '/resources/queue -d -c "cd ' . getcwd() . '/cache/query ; ../../resources/aloja_cli.r -m aloja_predict_instance -l ' . $current_model . ' -p inst_predict=\'' . $inst . '\' -v | grep -v \'Prediction\' >>' . $tmp_file . ' 2>/dev/null; touch ' . md5($config) . '-' . $count++ . '.lock" >/dev/null 2>&1 &');
                 }
             }
             $finished_process = (int) shell_exec('ls ' . getcwd() . '/cache/query/' . md5($config) . '-*.lock | wc -w ') == count($instances);
             if ($finished_process && !$is_cached) {
                 // Read results and dump to DB
                 $i = 0;
                 $token = 0;
                 $token_i = 0;
                 $query = "INSERT IGNORE INTO predictions (id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,name,datanodes,headnodes,vm_OS,vm_cores,vm_RAM,provider,vm_size,type,bench_type,pred_time,id_learner,instance,predict_code) VALUES ";
                 if (($handle = fopen(getcwd() . '/cache/query/' . $tmp_file, "r")) !== FALSE) {
                     while (($line = fgets($handle, 1000)) !== FALSE && $i < 1000) {
                         if ($line == '') {
                             break;
                         }
                         // Fetch Real Value
                         $inst_aux = preg_split("/\\s+/", $line);
                         $query_var = "SELECT AVG(exe_time) as AVG, id_exec, outlier FROM predictions WHERE instance = '" . $inst_aux[1] . "' AND predict_code > 0";
                         $result = $dbml->query($query_var);
                         $row = $result->fetch();
                         $realexecval = is_null($row['AVG']) || $row['outlier'] == 2 ? 0 : $row['AVG'];
                         $realid_exec = is_null($row['id_exec']) || $row['outlier'] == 2 ? 0 : $row['id_exec'];
                         $query_var = "SELECT count(*) as num FROM predictions WHERE instance = '" . $inst_aux[1] . "' AND id_learner = '" . $current_model . "'";
                         $result = $dbml->query($query_var);
                         $row = $result->fetch();
                         // Insert instance values
                         if ($row['num'] == 0) {
                             $token_i = 1;
                             $selected_instance = preg_replace('/,Cmp(\\d+),/', ',${1},', $inst_aux[1]);
                             $selected_instance = preg_replace('/,Cl(\\d+),/', ',${1},', $selected_instance);
                             if ($token > 0) {
                                 $query = $query . ",";
                             }
                             $token = 1;
                             $query = $query . "('" . $realid_exec . "','" . $realexecval . "','" . str_replace(",", "','", $selected_instance) . "','" . $inst_aux[2] . "','" . $current_model . "','" . $inst_aux[1] . "','0') ";
                         }
                         $i++;
                         if ($i % 100 == 0 && $token_i > 0) {
                             if ($dbml->query($query) === FALSE) {
                                 throw new \Exception('Error when saving into DB');
                             }
                             $query = "INSERT IGNORE INTO predictions (id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,name,datanodes,headnodes,vm_OS,vm_cores,vm_RAM,provider,vm_size,type,bench_type,pred_time,id_learner,instance,predict_code) VALUES ";
                             $token = 0;
                             $token_i = 0;
                         }
                     }
                     if ($token_i > 0) {
                         if ($dbml->query($query) === FALSE) {
                             throw new \Exception('Error when saving into DB');
                         }
                     }
                     // Descriptive Tree
                     $tree_descriptor = shell_exec(getcwd() . '/resources/aloja_cli.r -m aloja_representative_tree -p method=ordered:dump_file="' . getcwd() . '/cache/query/' . $tmp_file . '":output="html" -v 2> /dev/null');
                     $tree_descriptor = substr($tree_descriptor, 5, -2);
                     $query = "INSERT INTO trees (id_findattrs,id_learner,instance,model,tree_code) VALUES ('" . md5($config) . "','" . $current_model . "','" . $instance . "','" . $model_info . "','" . $tree_descriptor . "')";
                     if ($dbml->query($query) === FALSE) {
                         throw new \Exception('Error when saving tree into DB');
                     }
                     // remove remaining locks
                     shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.lock');
                     // Remove temporal files
                     $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '.tmp');
                     $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . $current_model . '-object.rds');
                     $is_cached = true;
                 }
                 fclose($handle);
             }
             if (!$is_cached) {
                 $jsonData = $jsonHeader = $jsonColumns = $jsonColor = '[]';
                 $must_wait = 'YES';
                 if (isset($_GET['dump'])) {
                     $dbml = null;
                     echo "1";
                     exit(0);
                 }
                 if (isset($_GET['pass'])) {
                     $dbml = null;
                     return "1";
                 }
             } else {
                 if (isset($_GET['pass']) && $_GET['pass'] == 2) {
                     $dbml = null;
                     return "2";
                 }
                 // Fetch results and compose JSON
                 $header = array('Benchmark', 'Net', 'Disk', 'Maps', 'IO.SFS', 'Rep', 'IO.FBuf', 'Comp', 'Blk.Size', 'Cluster', 'Cl.Name', 'Datanodes', 'Headnodes', 'VM.OS', 'VM.Cores', 'VM.RAM', 'Provider', 'VM.Size', 'Type', 'Bench.Type', 'Prediction', 'Observed');
                 $jsonHeader = '[{title:""}';
                 foreach ($header as $title) {
                     $jsonHeader = $jsonHeader . ',{title:"' . $title . '"}';
                 }
                 $jsonHeader = $jsonHeader . ']';
                 $query = "SELECT @i:=@i+1 as num, instance, AVG(pred_time) as pred_time, AVG(exe_time) as exe_time FROM predictions, (SELECT @i:=0) d WHERE id_learner='" . $current_model . "' " . $where_configs . " GROUP BY instance";
                 $result = $dbml->query($query);
                 $jsonData = '[';
                 foreach ($result as $row) {
                     if ($jsonData != '[') {
                         $jsonData = $jsonData . ',';
                     }
                     $jsonData = $jsonData . "['" . $row['num'] . "','" . str_replace(",", "','", $row['instance']) . "','" . $row['pred_time'] . "','" . $row['exe_time'] . "']";
                 }
                 $jsonData = $jsonData . ']';
                 foreach (range(1, 33) as $value) {
                     $jsonData = str_replace('Cmp' . $value, Utils::getCompressionName($value), $jsonData);
                 }
                 // Fetch MAE & RAE values
                 $query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE FROM predictions WHERE id_learner='" . md5($config) . "' AND predict_code > 0";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $mae = $row['MAE'];
                 $rae = $row['RAE'];
                 // Dump case
                 if (isset($_GET['dump'])) {
                     echo "ID" . str_replace(array("[", "]", "{title:\"", "\"}"), array('', '', ''), $jsonHeader) . "\n";
                     echo str_replace(array('],[', '[[', ']]'), array("\n", '', ''), $jsonData);
                     $dbml = null;
                     exit(0);
                 }
                 if (isset($_GET['pass']) && $_GET['pass'] == 1) {
                     $retval = "ID" . str_replace(array("[", "]", "{title:\"", "\"}"), array('', '', ''), $jsonHeader) . "\n";
                     $retval .= str_replace(array('],[', '[[', ']]'), array("\n", '', ''), $jsonData);
                     $dbml = null;
                     return $retval;
                 }
                 // Display Descriptive Tree
                 $query = "SELECT tree_code FROM trees WHERE id_findattrs = '" . md5($config) . "'";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $tree_descriptor = $row['tree_code'];
             }
         } else {
             $message = "There are no prediction models trained for such parameters. Train at least one model in 'ML Prediction' section.";
             if (isset($_GET['dump'])) {
                 echo "-1";
                 exit(0);
             }
             if (isset($_GET['pass'])) {
                 return "-1";
             }
             $config = "";
             $possible_models = $possible_models_id = array("None");
         }
         $dbml = null;
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonData = $jsonHeader = "[]";
         $instance = $instances = $possible_models_id = "";
         $possible_models = $possible_models_id = $other_models = array();
         $must_wait = 'NO';
         $mae = $rae = 0;
         $dbml = null;
         if (isset($_GET['pass'])) {
             return "-2";
         }
     }
     echo $this->container->getTwig()->render('mltemplate/mlfindattributes.html.twig', array('selected' => 'mlfindattributes', 'instance' => $instance, 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'jsonData' => $jsonData, 'jsonHeader' => $jsonHeader, 'models' => $model_html, 'models_id' => $possible_models_id, 'other_models_id' => $other_models, 'current_model' => $current_model, 'message' => $message, 'mae' => $mae, 'rae' => $rae, 'must_wait' => $must_wait, 'instance' => $instance, 'instances' => implode("<br/>", $instances), 'model_info' => $model_info, 'id_findattr' => md5($config), 'unseen' => $unseen, 'tree' => isset($_GET['tree']) ? "true" : "false", 'tree_descriptor' => $tree_descriptor, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #4
0
 public function mlcrossvar3dfaAction()
 {
     $jsonData = array();
     $message = $instance = $possible_models_id = '';
     $maxx = $minx = $maxy = $miny = $maxz = $minz = 0;
     $must_wait = 'NO';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists('current_model', $_GET) || count($_GET) == 3 && array_key_exists('variable1', $_GET) && array_key_exists('variable2', $_GET) || count($_GET) == 4 && array_key_exists('current_model', $_GET) && array_key_exists('variable1', $_GET) && array_key_exists('variable2', $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mlcrossvar3dfa');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $cross_var1 = array_key_exists('variable1', $_GET) ? $_GET['variable1'] : 'maps';
         $cross_var2 = array_key_exists('variable2', $_GET) ? $_GET['variable2'] : 'net';
         $unseen = array_key_exists('unseen', $_GET) && $_GET['unseen'] == 1;
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         $cross_var1 = str_replace("id_cluster", "e.id_cluster", $cross_var1);
         $cross_var2 = str_replace("id_cluster", "e.id_cluster", $cross_var2);
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, $unseen, $db);
         $model_info = MLUtils::generateModelInfo($param_names, $params, $unseen, $db);
         // Model for filling
         MLUtils::findMatchingModels($model_info, $possible_models, $possible_models_id, $dbml);
         $current_model = "";
         if (array_key_exists('current_model', $_GET) && in_array($_GET['current_model'], $possible_models_id)) {
             $current_model = $_GET['current_model'];
         }
         // Call to MLFindAttributes, to fetch data
         $_GET['pass'] = 1;
         $_GET['unseen'] = $unseen;
         $mlfa1 = new MLFindAttributesController();
         $mlfa1->container = $this->container;
         $ret_data = $mlfa1->mlfindattributesAction();
         $rows = null;
         if ($ret_data == 1) {
             $must_wait = "YES";
             $jsonData = '[]';
             $categories1 = $categories2 = "''";
         } else {
             if ($ret_data == -1) {
                 $must_wait = "NO";
                 $jsonData = '[]';
                 $categories1 = $categories2 = "''";
                 $message = "There are no prediction models trained for such parameters. Train at least one model in 'ML Prediction' section. [" . $instance . "]";
             } else {
                 // Get stuff from the DB
                 $query = "SELECT " . $cross_var1 . " AS V1, " . $cross_var2 . " AS V2, AVG(p.pred_time) as V3, p.instance\n\t\t\t\t\tFROM predictions as p\n\t\t\t\t\tWHERE p.id_learner " . ($current_model != '' ? "='" . $current_model . "'" : "IN (SELECT id_learner FROM trees WHERE model='" . $model_info . "')") . $where_configs . "\n\t\t\t\t\tGROUP BY p.instance\n\t\t\t\t\tORDER BY RAND() LIMIT 5000;";
                 // FIXME - CLUMPSY PATCH FOR BYPASS THE BUG FROM HIGHCHARTS... REMEMBER TO ERASE THIS LINE WHEN THE BUG IS SOLVED
                 $rows = $dbml->query($query);
                 if (empty($rows)) {
                     throw new \Exception('No data matches with your critteria.');
                 }
             }
         }
         if ($must_wait == "NO") {
             $map_var1 = $map_var2 = array();
             $count_var1 = $count_var2 = 0;
             $categories1 = $categories2 = '';
             $var1_categorical = in_array($cross_var1, array("net", "disk", "bench", "vm_OS", "provider", "vm_size", "type", "bench_type"));
             $var2_categorical = in_array($cross_var2, array("net", "disk", "bench", "vm_OS", "provider", "vm_size", "type", "bench_type"));
             foreach ($rows as $row) {
                 $entry = array();
                 if ($var1_categorical) {
                     if (!array_key_exists($row['V1'], $map_var1)) {
                         $map_var1[$row['V1']] = $count_var1++;
                         $categories1 = $categories1 . ($categories1 != '' ? "," : "") . "\"" . $row['V1'] . "\"";
                     }
                     $entry['y'] = $map_var1[$row['V1']] * (rand(990, 1010) / 1000);
                 } else {
                     $entry['y'] = (int) $row['V1'] * (rand(990, 1010) / 1000);
                 }
                 if ($entry['y'] > $maxy) {
                     $maxy = $entry['y'];
                 }
                 if ($entry['y'] < $miny) {
                     $miny = $entry['y'];
                 }
                 if ($var2_categorical) {
                     if (!array_key_exists($row['V2'], $map_var2)) {
                         $map_var2[$row['V2']] = $count_var2++;
                         $categories2 = $categories2 . ($categories2 != '' ? "," : "") . "\"" . $row['V2'] . "\"";
                     }
                     $entry['x'] = $map_var2[$row['V2']] * (rand(990, 1010) / 1000);
                 } else {
                     $entry['x'] = (int) $row['V2'] * (rand(990, 1010) / 1000);
                 }
                 if ($entry['x'] > $maxx) {
                     $maxx = $entry['x'];
                 }
                 if ($entry['x'] < $minx) {
                     $minx = $entry['x'];
                 }
                 $entry['z'] = -1 * (int) $row['V3'] * (rand(990, 1010) / 1000);
                 if ($entry['z'] > $maxz) {
                     $maxz = $entry['z'];
                 }
                 if ($entry['z'] < $minz) {
                     $minz = $entry['z'];
                 }
                 $entry['name'] = $row['instance'];
                 //$row['V1']." - ".$row['V2']." - ".max(100,(int)$row['V3']);
                 $jsonData[] = $entry;
             }
             $jsonData = json_encode($jsonData);
             if ($categories1 != '') {
                 $categories1 = "[" . $categories1 . "]";
             } else {
                 $categories1 = "''";
             }
             if ($categories2 != '') {
                 $categories2 = "[" . $categories2 . "]";
             } else {
                 $categories2 = "''";
             }
         }
         $dbml = null;
         $cross_var1 = str_replace("e.id_cluster", "id_cluster", $cross_var1);
         $cross_var2 = str_replace("e.id_cluster", "id_cluster", $cross_var2);
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonData = '[]';
         $cross_var1 = $cross_var2 = '';
         $categories1 = $categories2 = '';
         $maxx = $minx = $maxy = $miny = $maxz = $minz = 0;
         $must_wait = "NO";
         $dbml = null;
         $possible_models = $possible_models_id = array();
     }
     echo $this->container->getTwig()->render('mltemplate/mlcrossvar3dfa.html.twig', array('selected' => 'mlcrossvar3dfa', 'jsonData' => $jsonData, 'variable1' => $cross_var1, 'variable2' => $cross_var2, 'categories1' => $categories1, 'categories2' => $categories2, 'maxx' => $maxx, 'minx' => $minx, 'maxy' => $maxy, 'miny' => $miny, 'maxz' => $maxz, 'minz' => $minz, 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'message' => $message, 'instance' => $instance, 'model_info' => $model_info, 'current_model' => $current_model, 'unseen' => $unseen, 'models' => '<li>' . implode('</li><li>', $possible_models) . '</li>', 'models_id' => $possible_models_id, 'must_wait' => $must_wait, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #5
0
 public function mldatacollapseAction()
 {
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists("current_model", $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mldatacollapse');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $unseen = array_key_exists('unseen', $_GET) && $_GET['unseen'] == 1;
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         $dims1 = (empty($params['nets']) ? '' : 'Net,') . (empty($params['disks']) ? '' : 'Disk,') . (empty($params['blk_sizes']) ? '' : 'Blk.size,') . (empty($params['comps']) ? '' : 'Comp,');
         $dims1 = $dims1 . (empty($params['id_clusters']) ? '' : 'Cluster,') . (empty($params['mapss']) ? '' : 'Maps,') . (empty($params['replications']) ? '' : 'Rep,') . (empty($params['iosfs']) ? '' : 'IO.SFac,') . (empty($params['iofilebufs']) ? '' : 'IO.FBuf');
         if (substr($dims1, -1) == ',') {
             $dims1 = substr($dims1, 0, -1);
         }
         $dims2 = "Benchmark";
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, $unseen, $db);
         $model_info = MLUtils::generateModelInfo($param_names, $params, $unseen, $db);
         // select model for filling
         $possible_models = $possible_models_id = array();
         MLUtils::findMatchingModels($model_info, $possible_models, $possible_models_id, $dbml);
         $current_model = '';
         /*			if (array_key_exists('current_model',$_GET) && in_array($_GET['current_model'],$possible_models_id)) $current_model = $_GET['current_model']; // FIXME - Needs re-think logic
         
         			if ($current_model == '')
         			{
         				$query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE, p.id_learner FROM predictions p, learners l WHERE l.id_learner = p.id_learner AND p.id_learner IN ('".implode("','",$possible_models_id)."') AND predict_code > 0 ORDER BY MAE LIMIT 1";
         				$result = $dbml->query($query);
         				$row = $result->fetch();	
         				$current_model = $row['id_learner'];
         			}
         */
         $config = $instance . '-' . $current_model;
         $learning_model = '';
         if ($current_model != '' && file_exists(getcwd() . '/cache/query/' . $current_model . '-object.rds')) {
             $learning_model = ':model_name=' . $current_model . ':inst_general="' . $instance . '"';
         }
         $config = $dims1 . '-' . $dims2 . '-' . $current_model . '-' . $model_info;
         // get headers for csv
         $header_names = array('id_exec' => 'ID', 'bench' => 'Benchmark', 'exe_time' => 'Exe.Time', 'net' => 'Net', 'disk' => 'Disk', 'maps' => 'Maps', 'iosf' => 'IO.SFac', 'replication' => 'Rep', 'iofilebuf' => 'IO.FBuf', 'comp' => 'Comp', 'blk_size' => 'Blk.size', 'e.id_cluster' => 'Cluster', 'name' => 'Cl.Name', 'datanodes' => 'Datanodes', 'headnodes' => 'Headnodes', 'vm_OS' => 'VM.OS', 'vm_cores' => 'VM.Cores', 'vm_RAM' => 'VM.RAM', 'provider' => 'Provider', 'vm_size' => 'VM.Size', 'type' => 'Type', 'bench_type' => 'Bench.Type');
         $headers = array_keys($header_names);
         $names = array_values($header_names);
         $dims1_array = explode(",", $dims1);
         $dims1_query = '';
         $dims1_title = $dims1_concat = '';
         foreach ($dims1_array as $d1value) {
             $dims1_query = $dims1_query . ($dims1_query == '' ? '' : ',') . array_search($d1value, $header_names);
             $dims1_title = $dims1_title . ($dims1_title == '' ? '' : ':') . array_search($d1value, $header_names);
             $dims1_concat = $dims1_concat . ($dims1_concat == '' ? '' : ',":",') . array_search($d1value, $header_names);
         }
         $query = "SELECT distinct bench FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND e.exe_time > 100" . $where_configs . " ORDER BY bench;";
         $rows = $db->get_rows($query);
         if (empty($rows)) {
             throw new \Exception('No data matches with your critteria.');
         }
         $table = array();
         $jsonHeader = '[{title:"' . $dims1_title . '"}';
         foreach ($rows as $row) {
             $jsonHeader = $jsonHeader . ',{title:"' . $row['bench'] . '"}';
             $table[$row['bench']] = array();
         }
         $jsonHeader = $jsonHeader . ']';
         $query = "SELECT CONCAT(" . $dims1_concat . ") as dim1, bench, avg(exe_time) as avg_exe_time FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND e.exe_time > 100" . $where_configs . " GROUP BY bench," . $dims1_query . " ORDER BY dim1,bench;";
         $rows = $db->get_rows($query);
         if (empty($rows)) {
             throw new \Exception('No data matches with your critteria.');
         }
         foreach ($rows as $row) {
             $table[$row['bench']][$row['dim1']] = (int) $row['avg_exe_time'];
         }
         $row_ids = array();
         foreach ($table as $bmk) {
             foreach ($bmk as $key => $value) {
                 $row_ids[] = $key;
             }
         }
         $row_ids = array_unique($row_ids);
         $tableColor = array();
         foreach ($table as $bmk => $values) {
             $tableColor[$bmk] = array();
             foreach ($row_ids as $rid) {
                 if (!array_key_exists($rid, $table[$bmk])) {
                     $table[$bmk][$rid] = 0;
                     $tableColor[$bmk][$rid] = 0;
                 } else {
                     $tableColor[$bmk][$rid] = 1;
                 }
             }
         }
         $jsonData = '[';
         $jsonColor = '[';
         foreach ($row_ids as $rid) {
             $jsonData = $jsonData . ($jsonData == '[' ? '' : ',') . '[\'' . $rid . '\'';
             $jsonColor = $jsonColor . ($jsonColor == '[' ? '' : ',') . '[1';
             foreach ($table as $bmk => $values) {
                 $jsonData = $jsonData . ',' . $table[$bmk][$rid];
                 $jsonColor = $jsonColor . ',' . $tableColor[$bmk][$rid];
             }
             $jsonData = $jsonData . ']';
             $jsonColor = $jsonColor . ']';
         }
         $jsonData = $jsonData . ']';
         $jsonColor = $jsonColor . ']';
         $jsonColumns = '[';
         for ($i = 1; $i <= count($table); $i++) {
             if ($jsonColumns != '[') {
                 $jsonColumns = $jsonColumns . ',';
             }
             $jsonColumns = $jsonColumns . $i;
         }
         $jsonColumns = $jsonColumns . ']';
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonData = $jsonHeader = $jsonColumns = $jsonColor = '[]';
     }
     echo $this->container->getTwig()->render('mltemplate/mldatacollapse.html.twig', array('selected' => 'mldatacollapse', 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'jsonEncoded' => $jsonData, 'jsonHeader' => $jsonHeader, 'jsonColumns' => $jsonColumns, 'jsonColor' => $jsonColor, 'instance' => $instance, 'instance' => $instance, 'model_info' => $model_info, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #6
0
 public function mlsummariesAction()
 {
     $displaydata = $message = '';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1) {
             $preset = Utils::setDefaultPreset($db, 'mlsummaries');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $separate_feat = 'joined';
         if (array_key_exists('feature', $_GET)) {
             $separate_feat = $_GET['feature'];
         }
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, true, $db);
         $model_info = MLUtils::generateModelInfo($param_names, $params, true, $db);
         $config = $model_info . ' ' . $separate_feat . ' SUMMARY';
         $cache_ds = getcwd() . '/cache/query/' . md5($config) . '-cache.csv';
         $is_cached_mysql = $dbml->query("SELECT count(*) as num FROM summaries WHERE id_summaries = '" . md5($config) . "'");
         $tmp_result = $is_cached_mysql->fetch();
         $is_cached = $tmp_result['num'] > 0;
         if (!$is_cached) {
             // get headers for csv
             $header_names = array('id_exec' => 'ID', 'bench' => 'Benchmark', 'exe_time' => 'Exe.Time', 'net' => 'Net', 'disk' => 'Disk', 'maps' => 'Maps', 'iosf' => 'IO.SFac', 'replication' => 'Rep', 'iofilebuf' => 'IO.FBuf', 'comp' => 'Comp', 'blk_size' => 'Blk.size', 'e.id_cluster' => 'Cluster', 'name' => 'Cl.Name', 'datanodes' => 'Datanodes', 'headnodes' => 'Headnodes', 'vm_OS' => 'VM.OS', 'vm_cores' => 'VM.Cores', 'vm_RAM' => 'VM.RAM', 'provider' => 'Provider', 'vm_size' => 'VM.Size', 'type' => 'Type', 'bench_type' => 'Bench.Type');
             $headers = array_keys($header_names);
             $names = array_values($header_names);
             // dump the result to csv
             $query = "SELECT " . implode(",", $headers) . " FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND e.exe_time > 100" . $where_configs . ";";
             $rows = $db->get_rows($query);
             if (empty($rows)) {
                 throw new \Exception('No data matches with your critteria.');
             }
             $fp = fopen($cache_ds, 'w');
             fputcsv($fp, $names, ',', '"');
             foreach ($rows as $row) {
                 $row['id_cluster'] = "Cl" . $row['id_cluster'];
                 // Cluster is numerically codified...
                 $row['comp'] = "Cmp" . $row['comp'];
                 // Compression is numerically codified...
                 fputcsv($fp, array_values($row), ',', '"');
             }
             // launch query
             $command = 'cd ' . getcwd() . '/cache/query; ../../resources/aloja_cli.r -m aloja_print_summaries -d ' . $cache_ds . ' -p ' . ($separate_feat != 'joined' ? 'sname=' . $separate_feat . ':' : '') . 'fprint=' . md5($config) . ':fwidth=1000:html=1';
             #fwidth=135
             $output = shell_exec($command);
             // Save to DB
             if (($handle = fopen(getcwd() . '/cache/query/' . md5($config) . '-summary.data', 'r')) !== FALSE) {
                 $displaydata = "";
                 while (($data = fgets($handle)) !== FALSE) {
                     $displaydata = $displaydata . $data;
                 }
                 fclose($handle);
                 $displaydata = str_replace('\'', '\\\'', $displaydata);
                 // register model to DB
                 $query = "INSERT INTO summaries (id_summaries,instance,model,summary)";
                 $query = $query . " VALUES ('" . md5($config) . "','" . $instance . "','" . substr($model_info, 1) . "','" . $displaydata . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving model into DB');
                 }
             }
             // Remove temporal files
             $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '-summary.data');
             $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '-cache.csv');
         }
         // Read results of the DB
         $is_cached_mysql = $dbml->query("SELECT summary FROM summaries WHERE id_summaries = '" . md5($config) . "' LIMIT 1");
         $tmp_result = $is_cached_mysql->fetch();
         $displaydata = $tmp_result['summary'];
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $displaydata = $separate_feat = '';
     }
     echo $this->container->getTwig()->render('mltemplate/mlsummaries.html.twig', array('selected' => 'mlsummaries', 'displaydata' => $displaydata, 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'feature' => $separate_feat, 'message' => $message, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #7
0
 public function mloutliersAction()
 {
     $jsonData = $jsonWarns = $jsonOuts = array();
     $message = $instance = $jsonHeader = $jsonTable = '';
     $max_x = $max_y = 0;
     $must_wait = 'NO';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists('current_model', $_GET) || count($_GET) == 2 && array_key_exists('dump', $_GET) || count($_GET) == 2 && array_key_exists('register', $_GET) || count($_GET) == 3 && array_key_exists('dump', $_GET) && array_key_exists('current_model', $_GET) || count($_GET) == 3 && array_key_exists('register', $_GET) && array_key_exists('current_model', $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mloutliers');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $sigma_param = array_key_exists('sigma', $_GET) ? (int) $_GET['sigma'] : 1;
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, true, $db);
         // Used only as indicator for WEB
         $model_info = MLUtils::generateModelInfo($param_names, $params, true, $db);
         // model for filling
         MLUtils::findMatchingModels($model_info, $possible_models, $possible_models_id, $dbml);
         $current_model = "";
         if (array_key_exists('current_model', $_GET) && in_array($_GET['current_model'], $possible_models_id)) {
             $current_model = $_GET['current_model'];
         }
         if (!empty($possible_models_id)) {
             if ($current_model == "") {
                 $query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE, p.id_learner FROM predictions p, learners l WHERE l.id_learner = p.id_learner AND p.id_learner IN ('" . implode("','", $possible_models_id) . "') AND predict_code > 0 ORDER BY MAE LIMIT 1";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $current_model = $row['id_learner'];
             }
             $config = $instance . '-' . $current_model . '-' . $sigma_param . '-outliers';
             $is_cached_mysql = $dbml->query("SELECT count(*) as total FROM resolutions WHERE id_resolution = '" . md5($config) . "'");
             $tmp_result = $is_cached_mysql->fetch();
             $is_cached = $tmp_result['total'] > 0;
             $cache_ds = getcwd() . '/cache/query/' . md5($config) . '-cache.csv';
             $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
             $finished_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '-resolutions.csv');
             if (!$is_cached && !$in_process && !$finished_process) {
                 // get headers for csv
                 $header_names = array('id_exec' => 'ID', 'bench' => 'Benchmark', 'exe_time' => 'Exe.Time', 'net' => 'Net', 'disk' => 'Disk', 'maps' => 'Maps', 'iosf' => 'IO.SFac', 'replication' => 'Rep', 'iofilebuf' => 'IO.FBuf', 'comp' => 'Comp', 'blk_size' => 'Blk.size', 'e.id_cluster' => 'Cluster', 'name' => 'Cl.Name', 'datanodes' => 'Datanodes', 'headnodes' => 'Headnodes', 'vm_OS' => 'VM.OS', 'vm_cores' => 'VM.Cores', 'vm_RAM' => 'VM.RAM', 'provider' => 'Provider', 'vm_size' => 'VM.Size', 'type' => 'Type', 'bench_type' => 'Bench.Type');
                 $headers = array_keys($header_names);
                 $names = array_values($header_names);
                 // dump the result to csv
                 $query = "SELECT " . implode(",", $headers) . " FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND e.exe_time > 100" . $where_configs . ";";
                 $rows = $db->get_rows($query);
                 if (empty($rows)) {
                     throw new \Exception('No data matches with your critteria.');
                 }
                 $fp = fopen($cache_ds, 'w');
                 fputcsv($fp, $names, ',', '"');
                 foreach ($rows as $row) {
                     $row['id_cluster'] = "Cl" . $row['id_cluster'];
                     // Cluster is numerically codified...
                     $row['comp'] = "Cmp" . $row['comp'];
                     // Compression is numerically codified...
                     fputcsv($fp, array_values($row), ',', '"');
                 }
                 // Retrieve file model from DB
                 $query = "SELECT file FROM model_storage WHERE id_hash='" . $current_model . "' AND type='learner';";
                 $result = $dbml->query($query);
                 $row = $result->fetch();
                 $content = $row['file'];
                 $filemodel = getcwd() . '/cache/query/' . $current_model . '-object.rds';
                 $fp = fopen($filemodel, 'w');
                 fwrite($fp, $content);
                 fclose($fp);
                 // launch query
                 exec('cd ' . getcwd() . '/cache/query ; touch ' . md5($config) . '.lock');
                 exec(getcwd() . '/resources/queue -c "cd ' . getcwd() . '/cache/query ; ' . getcwd() . '/resources/aloja_cli.r -m aloja_outlier_dataset -d ' . $cache_ds . ' -l ' . $current_model . ' -p sigma=' . $sigma_param . ':hdistance=3:saveall=' . md5($config) . ' > /dev/null 2>&1 ; rm -f ' . md5($config) . '.lock" > /dev/null 2>&1 &');
             }
             $finished_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '-resolutions.csv');
             if ($finished_process && !$is_cached) {
                 if (($handle = fopen(getcwd() . '/cache/query/' . md5($config) . '-resolutions.csv', 'r')) !== FALSE) {
                     $header = fgetcsv($handle, 1000, ",");
                     $token = 0;
                     $query = "REPLACE INTO resolutions (id_resolution,id_learner,id_exec,instance,model,sigma,outlier_code,predicted,observed) VALUES ";
                     while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {
                         $resolution = $data[0];
                         $pred_value = (int) $data[1] >= 100 ? (int) $data[1] : 100;
                         $exec_value = (int) $data[2];
                         $selected_instance_pre = preg_replace('/\\s+/', '', $data[3]);
                         $selected_instance_pre = str_replace(':', ',', $selected_instance_pre);
                         $specific_id = $data[4];
                         if ($token > 0) {
                             $query = $query . ",";
                         }
                         $token = 1;
                         $query = $query . "('" . md5($config) . "','" . $current_model . "','" . $specific_id . "','" . $selected_instance_pre . "','" . $model_info . "','" . $sigma_param . "','" . $resolution . "','" . $pred_value . "','" . $exec_value . "') ";
                     }
                     if ($dbml->query($query) === FALSE) {
                         throw new \Exception('Error when saving tree into DB');
                     }
                 }
                 // Store file model to DB
                 $filemodel = getcwd() . '/cache/query/' . md5($config) . '-object.rds';
                 $fp = fopen($filemodel, 'r');
                 $content = fread($fp, filesize($filemodel));
                 $content = addslashes($content);
                 fclose($fp);
                 $query = "INSERT INTO model_storage (id_hash,type,file) VALUES ('" . md5($config) . "','resolution','" . $content . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving file resolution into DB');
                 }
                 // Remove temporary files
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '-*.csv');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . $current_model . '-object.rds');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '-object.rds');
                 $is_cached = true;
             }
             if (!$is_cached) {
                 $jsonData = $jsonOuts = $jsonWarns = $jsonHeader = $jsonTable = '[]';
                 $must_wait = 'YES';
                 if (isset($_GET['dump'])) {
                     echo "1";
                     exit(0);
                 }
             } else {
                 $must_wait = 'NO';
                 $query = "SELECT predicted, observed, outlier_code, id_exec, instance FROM resolutions WHERE id_resolution = '" . md5($config) . "' LIMIT 5000";
                 // FIXME - CLUMSY PATCH FOR BYPASS THE BUG FROM HIGHCHARTS... REMEMBER TO ERASE THIS LINE WHEN THE BUG IS SOLVED
                 $result = $dbml->query($query);
                 foreach ($result as $row) {
                     $entry = array('x' => (int) $row['predicted'], 'y' => (int) $row['observed'], 'name' => $row['instance'], 'id' => (int) $row['id_exec']);
                     if ($row['outlier_code'] == 0) {
                         $jsonData[] = $entry;
                     }
                     if ($row['outlier_code'] == 1) {
                         $jsonWarns[] = $entry;
                     }
                     if ($row['outlier_code'] == 2) {
                         $jsonOuts[] = $entry;
                     }
                     $jsonTable .= ($jsonTable == '' ? '' : ',') . '["' . ($row['outlier_code'] == 0 ? 'Legitimate' : ($row['outlier_code'] == 1 ? 'Warning' : 'Outlier')) . '","' . $row['predicted'] . '","' . $row['observed'] . '","' . str_replace(",", "\",\"", $row['instance']) . '","' . $row['id_exec'] . '"]';
                 }
                 $query_var = "SELECT MAX(predicted) as max_x, MAX(observed) as max_y FROM resolutions WHERE id_resolution = '" . md5($config) . "' LIMIT 5000";
                 $result = $dbml->query($query_var);
                 $row = $result->fetch();
                 $max_x = $row['max_x'];
                 $max_y = $row['max_y'];
                 $header = array('Prediction', 'Observed', 'Benchmark', 'Net', 'Disk', 'Maps', 'IO.SFS', 'Rep', 'IO.FBuf', 'Comp', 'Blk.Size', 'Cluster', 'Cl.Name', 'Datanodes', 'Headnodes', 'VM.OS', 'VM.Cores', 'VM.RAM', 'Provider', 'VM.Size', 'Type', 'Bench.Type', 'ID');
                 $jsonHeader = '[{title:""}';
                 foreach ($header as $title) {
                     $jsonHeader = $jsonHeader . ',{title:"' . $title . '"}';
                 }
                 $jsonHeader = $jsonHeader . ']';
                 $jsonData = json_encode($jsonData);
                 $jsonWarns = json_encode($jsonWarns);
                 $jsonOuts = json_encode($jsonOuts);
                 $jsonTable = '[' . $jsonTable . ']';
                 // Dump case
                 if (isset($_GET['dump'])) {
                     echo str_replace(array("[", "]", "{title:\"", "\"}"), array('', '', ''), $jsonHeader) . "\n";
                     echo str_replace(array('],[', '[[', ']]'), array("\n", '', ''), $jsonOuts);
                     echo str_replace(array('],[', '[[', ']]'), array("\n", '', ''), $jsonWarns);
                     echo str_replace(array('],[', '[[', ']]'), array("\n", '', ''), $jsonData);
                     exit(0);
                 }
                 // Register case
                 if (isset($_GET['register'])) {
                     // Update the predictions table
                     $query_var = "UPDATE predictions as p, resolutions as r\n\t\t\t\t\t\t\t\tSET p.outlier = r.outlier_code\n\t\t\t\t\t\t\t\tWHERE r.id_exec = p.id_exec\n\t\t\t\t\t\t\t\t\tAND r.id_resolution = '" . md5($config) . "'\n\t\t\t\t\t\t\t\t\tAND p.id_learner = '" . $current_model . "'";
                     if ($dbml->query($query_var) === FALSE) {
                         throw new \Exception('Error when updating predictions in DB');
                     }
                 }
             }
         } else {
             $message = "There are no prediction models trained for such parameters. Train at least one model in 'ML Prediction' section.";
             $must_wait = "NO";
         }
         $dbml = null;
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonData = $jsonOuts = $jsonWarns = $jsonHeader = $jsonTable = '[]';
         $model = '';
         $possible_models_id = $possible_models = array();
         $dbml = null;
     }
     echo $this->container->getTwig()->render('mltemplate/mloutliers.html.twig', array('selected' => 'mloutliers', 'jsonData' => $jsonData, 'jsonWarns' => $jsonWarns, 'jsonOuts' => $jsonOuts, 'jsonHeader' => $jsonHeader, 'jsonTable' => $jsonTable, 'max_p' => min(array($max_x, $max_y)), 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'must_wait' => $must_wait, 'models' => '<li>' . implode('</li><li>', $possible_models) . '</li>', 'models_id' => $possible_models_id, 'current_model' => $current_model, 'resolution_id' => md5($config), 'sigma' => $sigma_param, 'message' => $message, 'instance' => $instance, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }
コード例 #8
0
ファイル: DefaultController.php プロジェクト: seraphin/aloja
 public function nodesEvaluationAction()
 {
     $dbUtils = $this->container->getDBUtils();
     $preset = null;
     if (sizeof($_GET) <= 1) {
         $preset = Utils::setDefaultPreset($dbUtils, 'Number of Nodes Evaluation');
     }
     $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
     try {
         $filter_execs = DBUtils::getFilterExecs();
         $where_configs = '';
         $datefrom = Utils::read_params('datefrom', $where_configs);
         $dateto = Utils::read_params('dateto', $where_configs);
         $benchs = Utils::read_params('benchs', $where_configs, true);
         $nets = Utils::read_params('nets', $where_configs, true);
         $disks = Utils::read_params('disks', $where_configs, true);
         $blk_sizes = Utils::read_params('blk_sizes', $where_configs, true);
         $comps = Utils::read_params('comps', $where_configs, true);
         $id_clusters = Utils::read_params('id_clusters', $where_configs, true);
         $mapss = Utils::read_params('mapss', $where_configs, true);
         $replications = Utils::read_params('replications', $where_configs, true);
         $iosfs = Utils::read_params('iosfs', $where_configs, true);
         $iofilebufs = Utils::read_params('iofilebufs', $where_configs, true);
         $money = Utils::read_params('money', $where_configs, true);
         $datanodes = Utils::read_params('datanodess', $where_configs, true);
         $benchtype = Utils::read_params('bench_types', $where_configs, true);
         $vm_sizes = Utils::read_params('vm_sizes', $where_configs, true);
         $vm_coress = Utils::read_params('vm_coress', $where_configs, true);
         $vm_RAMs = Utils::read_params('vm_RAMs', $where_configs, true);
         $hadoop_versions = Utils::read_params('hadoop_versions', $where_configs, true);
         $types = Utils::read_params('types', $where_configs, true);
         $filters = Utils::read_params('filters', $where_configs, true);
         $allunchecked = isset($_GET['allunchecked']) ? $_GET['allunchecked'] : '';
         $minexetime = Utils::read_params('minexetime', $where_configs, true);
         $maxexetime = Utils::read_params('maxexetime', $where_configs, true);
         $provider = Utils::read_params('providers', $where_configs, false);
         $vm_OS = Utils::read_params('vm_OSs', $where_configs, false);
         if (!$benchs) {
             $where_configs .= 'AND bench IN (\'terasort\')';
         }
         /*
                     $selectedGroups = array();
                     if(isset($_GET['selected-groups']) && $_GET['selected-groups'] != "") {
                         $selectedGroups = explode(",",$_GET['selected-groups']);
                     }
                     else {
                         $selectedGroups[] = 'exec_type';
                         $selectedGroups[] = 'vm_OS';
                     }
                     $selectedString = implode(',',Utils::getStandardGroupBy($selectedGroups));
         
                     $query = "SELECT ".str_replace("execTable","e",str_replace("clusterTable","c",$selectedString)).",c.vm_size,(e.exe_time * (c.cost_hour / 3600)) as cost, e.*, c.*".
                         " FROM execs e JOIN clusters c USING (id_cluster) INNER JOIN (
                             SELECT ".str_replace("execTable","e2",str_replace("clusterTable","c2",$selectedString)).",c2.vm_size as vmsize,MIN(e2.exe_time) as minexe from execs e2 JOIN clusters c2 USING (id_cluster) WHERE 1 $where_configs GROUP BY ".str_replace("execTable","e2",str_replace("clusterTable","c2",$selectedString)).",c2.vm_size
                         ) t ON";
         
                     $it = 0;
                     foreach(explode(',',$selectedString) as $group) {
                         if ($it != 0)
                             $query .= " AND";
         
                         $tableName = str_replace("execTable", "e", $group);
                         $tableName = str_replace("clusterTable", "c", $tableName);
                         $withoutPrefixes = str_replace(array("execTable.", "clusterTable."), '', $group);
                         $query .= " t.$withoutPrefixes = $tableName";
                         $it++;
                     }
                     $query .= " AND t.vmsize = c.vm_size WHERE 1 GROUP BY ".str_replace("execTable","e",str_replace("clusterTable","c",$selectedString)).",c.vm_size ORDER BY ".str_replace("execTable","e",str_replace("clusterTable","c",$selectedString)).",c.vm_size DESC;";
                     $execs = $dbUtils->get_rows($query);
         */
         $execs = $dbUtils->get_rows("SELECT c.datanodes,e.exec_type,c.vm_OS,c.vm_size,(e.exe_time * (c.cost_hour/3600)) as cost,e.*,c.* FROM execs e JOIN clusters c USING (id_cluster) INNER JOIN ( SELECT c2.datanodes,e2.exec_type,c2.vm_OS,c2.vm_size as vmsize,MIN(e2.exe_time) as minexe from execs e2 JOIN clusters c2 USING (id_cluster) WHERE 1 {$where_configs} GROUP BY c2.datanodes,e2.exec_type,c2.vm_OS,c2.vm_size ) t ON t.minexe = e.exe_time AND t.datanodes = c.datanodes AND t.vmsize = c.vm_size WHERE 1 {$filter_execs}  GROUP BY c.datanodes,e.exec_type,c.vm_OS,c.vm_size ORDER BY c.datanodes ASC,c.vm_OS,c.vm_size DESC;");
         $vmSizes = array();
         $categories = array();
         $dataNodes = array();
         $vmOS = array();
         $execTypes = array();
         foreach ($execs as &$exec) {
             if (!isset($dataNodes[$exec['datanodes']])) {
                 $dataNodes[$exec['datanodes']] = 1;
                 $categories[] = $exec['datanodes'];
             }
             if (!isset($vmOS[$exec['vm_OS']])) {
                 $vmOS[$exec['vm_OS']] = 1;
             }
             if (!isset($execTypes[$exec['exec_type']])) {
                 $execTypes[$exec['exec_type']] = 1;
             }
             $vmSizes[$exec['vm_size']][$exec['exec_type']][$exec['vm_OS']][$exec['datanodes']] = array(round($exec['exe_time'], 2), round($exec['cost'], 2));
         }
         $i = 0;
         $seriesColors = array('#7cb5ec', '#434348', '#90ed7d', '#f7a35c', '#8085e9', '#f15c80', '#e4d354', '#2b908f', '#f45b5b', '#91e8e1');
         $series = array();
         foreach ($vmSizes as $vmSize => $value) {
             foreach ($execTypes as $execType => $typevalue) {
                 foreach ($vmOS as $OS => $osvalue) {
                     if (isset($vmSizes[$vmSize][$execType][$OS])) {
                         if ($i == sizeof($seriesColors)) {
                             $i = 0;
                         }
                         $costSeries = array('name' => "{$vmSize} {$execType} {$OS} Run cost", 'type' => 'spline', 'dashStyle' => 'longdash', 'yAxis' => 0, 'data' => array(), 'tooltip' => array('valueSuffix' => ' US$'), 'color' => $seriesColors[$i]);
                         $timeSeries = array('name' => "{$vmSize} {$execType} {$OS} Run execution time", 'type' => 'spline', 'yAxis' => 1, 'data' => array(), 'tooltip' => array('valueSuffix' => ' s'), 'color' => $seriesColors[$i++]);
                         foreach ($dataNodes as $datanodes => $dvalue) {
                             if (!isset($value[$execType][$OS][$datanodes])) {
                                 $costSeries['data'][] = "null";
                                 $timeSeries['data'][] = "null";
                             } else {
                                 $costSeries['data'][] = $value[$execType][$OS][$datanodes][1];
                                 $timeSeries['data'][] = $value[$execType][$OS][$datanodes][0];
                             }
                         }
                         $series[] = $timeSeries;
                         $series[] = $costSeries;
                     }
                 }
             }
         }
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
     }
     echo $this->container->getTwig()->render('nodeseval/nodes_evaluation.html.twig', array('selected' => 'Number of Nodes Evaluation', 'highcharts_js' => HighCharts::getHeader(), 'categories' => json_encode($categories), 'seriesData' => str_replace('"null"', 'null', json_encode($series)), 'options' => Utils::getFilterOptions($dbUtils), 'datefrom' => $datefrom, 'dateto' => $dateto, 'benchs' => $benchs, 'nets' => $nets, 'disks' => $disks, 'blk_sizes' => $blk_sizes, 'comps' => $comps, 'id_clusters' => $id_clusters, 'mapss' => $mapss, 'replications' => $replications, 'iosfs' => $iosfs, 'iofilebufs' => $iofilebufs, 'money' => $money, 'datanodess' => $datanodes, 'bench_types' => $benchtype, 'vm_sizes' => $vm_sizes, 'vm_coress' => $vm_coress, 'vm_RAMs' => $vm_RAMs, 'vm_OS' => $vm_OS, 'hadoop_versions' => $hadoop_versions, 'types' => $types, 'providers' => $provider, 'filters' => $filters, 'allunchecked' => $allunchecked, 'select_multiple_benchs' => false, 'minexetime' => $minexetime, 'maxexetime' => $maxexetime, 'preset' => $preset, 'selPreset' => $selPreset, 'select_multiple_benchs' => false));
 }
コード例 #9
0
 public function mlpredictionAction()
 {
     $jsonExecs = array();
     $instance = $error_stats = '';
     try {
         $dbml = new \PDO($this->container->get('config')['db_conn_chain_ml'], $this->container->get('config')['mysql_user'], $this->container->get('config')['mysql_pwd']);
         $dbml->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
         $dbml->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);
         $db = $this->container->getDBUtils();
         $where_configs = '';
         $preset = null;
         if (count($_GET) <= 1 || count($_GET) == 2 && array_key_exists("dump", $_GET) || count($_GET) == 2 && array_key_exists("pass", $_GET) || count($_GET) == 3 && array_key_exists("dump", $_GET) && array_key_exists("pass", $_GET)) {
             $preset = Utils::setDefaultPreset($db, 'mlprediction');
         }
         $selPreset = isset($_GET['presets']) ? $_GET['presets'] : "none";
         $params = array();
         $param_names = array('benchs', 'nets', 'disks', 'mapss', 'iosfs', 'replications', 'iofilebufs', 'comps', 'blk_sizes', 'id_clusters', 'datanodess', 'bench_types', 'vm_sizes', 'vm_coress', 'vm_RAMs', 'types');
         // Order is important
         foreach ($param_names as $p) {
             $params[$p] = Utils::read_params($p, $where_configs, FALSE);
             sort($params[$p]);
         }
         $learn_param = array_key_exists('learn', $_GET) ? $_GET['learn'] : 'regtree';
         $unrestricted = array_key_exists('umodel', $_GET) && $_GET['umodel'] == 1;
         // FIXME PATCH FOR PARAM LIBRARIES WITHOUT LEGACY
         $where_configs = str_replace("`id_cluster`", "e.`id_cluster`", $where_configs);
         $where_configs = str_replace("AND .", "AND ", $where_configs);
         // compose instance
         $instance = MLUtils::generateSimpleInstance($param_names, $params, $unrestricted, $db);
         $model_info = MLUtils::generateModelInfo($param_names, $params, $unrestricted, $db);
         $config = $model_info . ' ' . $learn_param . ' ' . ($unrestricted ? 'U' : 'R');
         $learn_options = 'saveall=' . md5($config);
         if ($learn_param == 'regtree') {
             $learn_method = 'aloja_regtree';
             $learn_options .= ':prange=0,20000';
         } else {
             if ($learn_param == 'nneighbours') {
                 $learn_method = 'aloja_nneighbors';
                 $learn_options .= ':kparam=3';
             } else {
                 if ($learn_param == 'nnet') {
                     $learn_method = 'aloja_nnet';
                     $learn_options .= ':prange=0,20000';
                 } else {
                     if ($learn_param == 'polyreg') {
                         $learn_method = 'aloja_linreg';
                         $learn_options .= ':ppoly=3:prange=0,20000';
                     }
                 }
             }
         }
         $cache_ds = getcwd() . '/cache/query/' . md5($config) . '-cache.csv';
         $is_cached_mysql = $dbml->query("SELECT count(*) as num FROM learners WHERE id_learner = '" . md5($config) . "'");
         $tmp_result = $is_cached_mysql->fetch();
         $is_cached = $tmp_result['num'] > 0;
         $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
         $finished_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.fin');
         if (!$is_cached && !$in_process && !$finished_process) {
             // get headers for csv
             $header_names = array('id_exec' => 'ID', 'bench' => 'Benchmark', 'exe_time' => 'Exe.Time', 'net' => 'Net', 'disk' => 'Disk', 'maps' => 'Maps', 'iosf' => 'IO.SFac', 'replication' => 'Rep', 'iofilebuf' => 'IO.FBuf', 'comp' => 'Comp', 'blk_size' => 'Blk.size', 'e.id_cluster' => 'Cluster', 'name' => 'Cl.Name', 'datanodes' => 'Datanodes', 'headnodes' => 'Headnodes', 'vm_OS' => 'VM.OS', 'vm_cores' => 'VM.Cores', 'vm_RAM' => 'VM.RAM', 'provider' => 'Provider', 'vm_size' => 'VM.Size', 'type' => 'Type', 'bench_type' => 'Bench.Type');
             $headers = array_keys($header_names);
             $names = array_values($header_names);
             // dump the result to csv
             $query = "SELECT " . implode(",", $headers) . " FROM execs e LEFT JOIN clusters c ON e.id_cluster = c.id_cluster WHERE e.valid = TRUE AND e.exe_time > 100" . $where_configs . ";";
             $rows = $db->get_rows($query);
             if (empty($rows)) {
                 throw new \Exception('No data matches with your critteria.');
             }
             $fp = fopen($cache_ds, 'w');
             fputcsv($fp, $names, ',', '"');
             foreach ($rows as $row) {
                 $row['id_cluster'] = "Cl" . $row['id_cluster'];
                 // Cluster is numerically codified...
                 $row['comp'] = "Cmp" . $row['comp'];
                 // Compression is numerically codified...
                 fputcsv($fp, array_values($row), ',', '"');
             }
             // run the R processor
             exec('cd ' . getcwd() . '/cache/query ; touch ' . getcwd() . '/cache/query/' . md5($config) . '.lock');
             exec('cd ' . getcwd() . '/cache/query ; ' . getcwd() . '/resources/queue -c "' . getcwd() . '/resources/aloja_cli.r -d ' . $cache_ds . ' -m ' . $learn_method . ' -p ' . $learn_options . ' > /dev/null 2>&1; rm -f ' . getcwd() . '/cache/query/' . md5($config) . '.lock; touch ' . md5($config) . '.fin" > /dev/null 2>&1 -p 1 &');
         }
         $in_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.lock');
         $finished_process = file_exists(getcwd() . '/cache/query/' . md5($config) . '.fin');
         if ($in_process) {
             $jsonExecs = "[]";
             $must_wait = "YES";
             $max_x = $max_y = 0;
             if (isset($_GET['dump'])) {
                 echo "1";
                 exit(0);
             }
             if (isset($_GET['pass'])) {
                 return 1;
             }
         } else {
             $is_cached_mysql = $dbml->query("SELECT count(*) as num FROM learners WHERE id_learner = '" . md5($config) . "'");
             $tmp_result = $is_cached_mysql->fetch();
             $is_cached = $tmp_result['num'] > 0;
             if (!$is_cached) {
                 // register model to DB
                 $query = "INSERT IGNORE INTO learners (id_learner,instance,model,algorithm)";
                 $query = $query . " VALUES ('" . md5($config) . "','" . $instance . "','" . substr($model_info, 1) . "','" . $learn_param . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving model into DB');
                 }
                 // read results of the CSV and dump to DB
                 foreach (array("tt", "tv", "tr") as $value) {
                     if (($handle = fopen(getcwd() . '/cache/query/' . md5($config) . '-' . $value . '.csv', 'r')) !== FALSE) {
                         $header = fgetcsv($handle, 1000, ",");
                         $token = 0;
                         $insertions = 0;
                         $query = "INSERT IGNORE INTO predictions (id_exec,exe_time,bench,net,disk,maps,iosf,replication,iofilebuf,comp,blk_size,id_cluster,name,datanodes,headnodes,vm_OS,vm_cores,vm_RAM,provider,vm_size,type,bench_type,pred_time,id_learner,instance,predict_code) VALUES ";
                         while (($data = fgetcsv($handle, 1000, ",")) !== FALSE) {
                             $specific_instance = implode(",", array_slice($data, 2, 20));
                             $specific_data = implode(",", $data);
                             $specific_data = preg_replace('/,Cmp(\\d+),/', ',${1},', $specific_data);
                             $specific_data = preg_replace('/,Cl(\\d+),/', ',${1},', $specific_data);
                             $specific_data = str_replace(",", "','", $specific_data);
                             $query_var = "SELECT count(*) as num FROM predictions WHERE instance = '" . $specific_instance . "' AND id_learner = '" . md5($config) . "'";
                             $result = $dbml->query($query_var);
                             $row = $result->fetch();
                             // Insert instance values
                             if ($row['num'] == 0) {
                                 if ($token != 0) {
                                     $query = $query . ",";
                                 }
                                 $token = 1;
                                 $insertions = 1;
                                 $query = $query . "('" . $specific_data . "','" . md5($config) . "','" . $specific_instance . "','" . ($value == 'tt' ? 3 : ($value == 'tv' ? 2 : 1)) . "') ";
                             }
                         }
                         if ($insertions > 0) {
                             if ($dbml->query($query) === FALSE) {
                                 throw new \Exception('Error when saving into DB');
                             }
                         }
                         fclose($handle);
                     }
                 }
                 // Store file model to DB
                 $filemodel = getcwd() . '/cache/query/' . md5($config) . '-object.rds';
                 $fp = fopen($filemodel, 'r');
                 $content = fread($fp, filesize($filemodel));
                 $content = addslashes($content);
                 fclose($fp);
                 $query = "INSERT INTO model_storage (id_hash,type,file) VALUES ('" . md5($config) . "','learner','" . $content . "');";
                 if ($dbml->query($query) === FALSE) {
                     throw new \Exception('Error when saving file model into DB');
                 }
                 // Remove temporal files
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.csv');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.fin');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.dat');
                 $output = shell_exec('rm -f ' . getcwd() . '/cache/query/' . md5($config) . '*.rds');
             }
             $must_wait = "NO";
             $count = 0;
             $max_x = $max_y = 0;
             $error_stats = '';
             $query = "SELECT exe_time, pred_time, instance FROM predictions WHERE id_learner='" . md5($config) . "' AND exe_time > 100 LIMIT 5000";
             // FIXME - CLUMPSY PATCH FOR BYPASS THE BUG FROM HIGHCHARTS... REMEMBER TO ERASE THIS LIMIT WHEN THE BUG IS SOLVED
             $result = $dbml->query($query);
             foreach ($result as $row) {
                 $jsonExecs[$count]['y'] = (int) $row['exe_time'];
                 $jsonExecs[$count]['x'] = (int) $row['pred_time'];
                 $jsonExecs[$count]['mydata'] = $row['instance'];
                 if ((int) $row['exe_time'] > $max_y) {
                     $max_y = (int) $row['exe_time'];
                 }
                 if ((int) $row['pred_time'] > $max_x) {
                     $max_x = (int) $row['pred_time'];
                 }
                 $count++;
             }
             $query = "SELECT AVG(ABS(exe_time - pred_time)) AS MAE, AVG(ABS(exe_time - pred_time)/exe_time) AS RAE, predict_code FROM predictions WHERE id_learner='" . md5($config) . "' AND predict_code > 0 AND exe_time > 100 GROUP BY predict_code";
             $result = $dbml->query($query);
             foreach ($result as $row) {
                 $error_stats = $error_stats . 'Dataset: ' . ($row['predict_code'] == 1 ? 'tr' : ($row['predict_code'] == 2 ? 'tv' : 'tt')) . ' => MAE: ' . $row['MAE'] . ' RAE: ' . $row['RAE'] . '<br/>';
             }
             if (isset($_GET['dump'])) {
                 $data = json_encode($jsonExecs);
                 echo "Observed, Predicted, Execution\n";
                 echo str_replace(array('},{"y":', '"x":', '"mydata":', '[{"y":', '"}]'), array("\n", '', '', '', ''), $data);
                 exit(0);
             }
             if (isset($_GET['pass'])) {
                 $data = json_encode($jsonExecs);
                 $retval = "Observed, Predicted, Execution\n";
                 $retval = $retval . str_replace(array('},{"y":', '"x":', '"mydata":', '[{"y":', '"}]'), array("\n", '', '', '', ''), $data);
                 return $retval;
             }
         }
         $dbml = null;
     } catch (\Exception $e) {
         $this->container->getTwig()->addGlobal('message', $e->getMessage() . "\n");
         $jsonExecs = '[]';
         $max_x = $max_y = 0;
         $must_wait = 'NO';
         $dbml = null;
     }
     echo $this->container->getTwig()->render('mltemplate/mlprediction.html.twig', array('selected' => 'mlprediction', 'jsonExecs' => json_encode($jsonExecs), 'max_p' => min(array($max_x, $max_y)), 'benchs' => $params['benchs'], 'nets' => $params['nets'], 'disks' => $params['disks'], 'blk_sizes' => $params['blk_sizes'], 'comps' => $params['comps'], 'id_clusters' => $params['id_clusters'], 'mapss' => $params['mapss'], 'replications' => $params['replications'], 'iosfs' => $params['iosfs'], 'iofilebufs' => $params['iofilebufs'], 'datanodess' => $params['datanodess'], 'bench_types' => $params['bench_types'], 'vm_sizes' => $params['vm_sizes'], 'vm_coress' => $params['vm_coress'], 'vm_RAMs' => $params['vm_RAMs'], 'types' => $params['types'], 'unrestricted' => $unrestricted, 'learn' => $learn_param, 'must_wait' => $must_wait, 'instance' => $instance, 'model_info' => $model_info, 'id_learner' => md5($config), 'error_stats' => $error_stats, 'preset' => $preset, 'selPreset' => $selPreset, 'options' => Utils::getFilterOptions($db)));
 }