/** * Kruskal's algorithm to find a minimum-cost spanning tree * for the given edge-weighted, undirected graph. * Uses a partition and a priority queue. * * @param object IGraph $g An edge-weighted, undirected graph. * It is assumed that the edge weights are <code>Int</code>s * @return object IGraph An unweighted, undirected graph that represents * the minimum-cost spanning tree. */ public static function kruskalsAlgorithm(IGraph $g) { $n = $g->getNumberOfVertices(); $result = new GraphAsLists($n); for ($v = 0; $v < $n; ++$v) { $result->addVertex($v); } $queue = new BinaryHeap($g->getNumberOfEdges()); foreach ($g->getEdges() as $edge) { $weight = $edge->getWeight(); $queue->enqueue(new Association($weight, $edge)); } $partition = new PartitionAsForest($n); while (!$queue->isEmpty() && $partition->getCount() > 1) { $assoc = $queue->dequeueMin(); $edge = $assoc->getValue(); $n0 = $edge->getV0()->getNumber(); $n1 = $edge->getV1()->getNumber(); $s = $partition->findItem($n0); $t = $partition->findItem($n1); if ($s !== $t) { $partition->join($s, $t); $result->addEdge($n0, $n1); } } return $result; }