/** * Calculates the greatest common divisor and Bezout's identity. * * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which * combination is returned is dependant upon which mode is in use. See * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. * * Here's an example: * <code> * <?php * include('Math/BigInteger.php'); * * $a = new BigInteger(693); * $b = new BigInteger(609); * * extract($a->extendedGCD($b)); * * echo $gcd->toString() . "\r\n"; // outputs 21 * echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21 * ?> * </code> * * @param BigInteger $n * @return BigInteger * @access public * @internal Calculates the GCD using the binary xGCD algorithim described in * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, * the more traditional algorithim requires "relatively costly multiple-precision divisions". */ function extendedGCD($n) { switch (MATH_BIGINTEGER_MODE) { case MATH_BIGINTEGER_MODE_GMP: extract(gmp_gcdext($this->value, $n->value)); return array('gcd' => $this->_normalize(new BigInteger($g)), 'x' => $this->_normalize(new BigInteger($s)), 'y' => $this->_normalize(new BigInteger($t))); case MATH_BIGINTEGER_MODE_BCMATH: // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is, // the basic extended euclidean algorithim is what we're using. $u = $this->value; $v = $n->value; $a = '1'; $b = '0'; $c = '0'; $d = '1'; while (bccomp($v, '0', 0) != 0) { $q = bcdiv($u, $v, 0); $temp = $u; $u = $v; $v = bcsub($temp, bcmul($v, $q, 0), 0); $temp = $a; $a = $c; $c = bcsub($temp, bcmul($a, $q, 0), 0); $temp = $b; $b = $d; $d = bcsub($temp, bcmul($b, $q, 0), 0); } return array('gcd' => $this->_normalize(new BigInteger($u)), 'x' => $this->_normalize(new BigInteger($a)), 'y' => $this->_normalize(new BigInteger($b))); } $y = $n->copy(); $x = $this->copy(); $g = new BigInteger(); $g->value = array(1); while (!($x->value[0] & 1 || $y->value[0] & 1)) { $x->_rshift(1); $y->_rshift(1); $g->_lshift(1); } $u = $x->copy(); $v = $y->copy(); $a = new BigInteger(); $b = new BigInteger(); $c = new BigInteger(); $d = new BigInteger(); $a->value = $d->value = $g->value = array(1); $b->value = $c->value = array(); while (!empty($u->value)) { while (!($u->value[0] & 1)) { $u->_rshift(1); if (!empty($a->value) && $a->value[0] & 1 || !empty($b->value) && $b->value[0] & 1) { $a = $a->add($y); $b = $b->subtract($x); } $a->_rshift(1); $b->_rshift(1); } while (!($v->value[0] & 1)) { $v->_rshift(1); if (!empty($d->value) && $d->value[0] & 1 || !empty($c->value) && $c->value[0] & 1) { $c = $c->add($y); $d = $d->subtract($x); } $c->_rshift(1); $d->_rshift(1); } if ($u->compare($v) >= 0) { $u = $u->subtract($v); $a = $a->subtract($c); $b = $b->subtract($d); } else { $v = $v->subtract($u); $c = $c->subtract($a); $d = $d->subtract($b); } } return array('gcd' => $this->_normalize($g->multiply($v)), 'x' => $this->_normalize($c), 'y' => $this->_normalize($d)); }