getRowCount() public method

public getRowCount ( ) : integer
return integer
Exemplo n.º 1
0
 /**
  * @param Matrix $source
  * @throws MatrixException
  */
 private function decompose(Matrix $source)
 {
     $decompositionLiteral = $source->toArray();
     if (!$source->isSquare()) {
         throw new MatrixException('Operation can only be called on square matrix: ' . print_r($decompositionLiteral, true));
     }
     $size = $source->getRowCount();
     for ($k = 0; $k < $size; $k++) {
         for ($i = $k + 1; $i < $size; $i++) {
             $decompositionLiteral[$i][$k] = $decompositionLiteral[$i][$k] / $decompositionLiteral[$k][$k];
         }
         for ($i = $k + 1; $i < $size; $i++) {
             for ($j = $k + 1; $j < $size; $j++) {
                 $decompositionLiteral[$i][$j] = $decompositionLiteral[$i][$j] - $decompositionLiteral[$i][$k] * $decompositionLiteral[$k][$j];
             }
         }
     }
     $this->decomposition = new Matrix($decompositionLiteral);
 }
Exemplo n.º 2
0
 /**
  * @param Matrix $source
  * @throws MatrixException
  */
 private function decompose(Matrix $source)
 {
     $sourceLiteral = $source->toArray();
     $decompositionLiteral = $sourceLiteral;
     if (!$source->isSquare()) {
         throw new MatrixException('Operation can only be called on square matrix: ' . print_r($decompositionLiteral, true));
     }
     $size = $source->getRowCount();
     $this->permutation = range(0, $size - 1);
     for ($k = 0; $k < $size; $k++) {
         $p = 0.0;
         $kPrime = $k;
         for ($i = $k; $i < $size; $i++) {
             $absolute = abs($decompositionLiteral[$i][$k]);
             if ($absolute > $p) {
                 $p = $absolute;
                 $kPrime = $i;
             }
         }
         if ($p === 0.0) {
             throw new MatrixException('Cannot take the LUP decomposition of a singular matrix: ' . print_r($sourceLiteral, true));
         }
         if ($k !== $kPrime) {
             list($this->permutation[$k], $this->permutation[$kPrime]) = [$this->permutation[$kPrime], $this->permutation[$k]];
             $this->parity++;
         }
         for ($i = 0; $i < $size; $i++) {
             list($decompositionLiteral[$k][$i], $decompositionLiteral[$kPrime][$i]) = [$decompositionLiteral[$kPrime][$i], $decompositionLiteral[$k][$i]];
         }
         for ($i = $k + 1; $i < $size; $i++) {
             $decompositionLiteral[$i][$k] = $decompositionLiteral[$i][$k] / $decompositionLiteral[$k][$k];
             for ($j = $k + 1; $j < $size; $j++) {
                 $decompositionLiteral[$i][$j] = $decompositionLiteral[$i][$j] - $decompositionLiteral[$i][$k] * $decompositionLiteral[$k][$j];
             }
         }
     }
     $this->decomposition = new Matrix($decompositionLiteral);
 }
Exemplo n.º 3
0
 /**
  * @param self $source
  * @return self
  */
 private function recursiveSolveInverse(self $source) : self
 {
     $size = $source->getRowCount();
     if ($size === 1) {
         return new static([[1 / $source->get(0, 0)]]);
     }
     $half = (int) ($size / 2);
     // Partition source matrix.
     $B = $source->sliceRows(0, $half)->sliceColumns(0, $half);
     $CT = $source->sliceRows(0, $half)->sliceColumns($half);
     $D = $source->sliceRows($half)->sliceColumns($half);
     $C = $source->sliceRows($half)->sliceColumns(0, $half);
     // Handle intermediate calculations.
     $Binv = $this->recursiveSolveInverse($B);
     $W = $C->multiplyMatrix($Binv);
     $WT = $W->transpose();
     $X = $W->multiplyMatrix($CT);
     $S = $D->subtractMatrix($X);
     $Sinv = $this->recursiveSolveInverse($S);
     $V = $Sinv;
     $Y = $Sinv->multiplyMatrix($W);
     $YT = $Y->transpose();
     $T = $YT->multiplyScalar(-1);
     $U = $Y->multiplyScalar(-1);
     $Z = $WT->multiplyMatrix($Y);
     $R = $Binv->addMatrix($Z);
     // Stitch together intermediate results into the final result
     return $R->concatenateRight($T)->concatenateBottom($U->concatenateRight($V));
 }
Exemplo n.º 4
-1
 /**
  * @param Observations $observations
  * @return array
  * @throws InvalidArgumentException
  */
 public function regress(Observations $observations) : array
 {
     $design = new Matrix($observations->getFeatures());
     $observed = (new Matrix([$observations->getOutcomes()]))->transpose();
     if ($design->getRowCount() < $design->getColumnCount()) {
         throw new InvalidArgumentException('Not enough observations to perform regression. You need to have more observations than explanatory variables.');
     }
     $designTranspose = $design->transpose();
     $prediction = $designTranspose->multiplyMatrix($design)->inverse()->multiplyMatrix($designTranspose->multiplyMatrix($observed));
     return $prediction->transpose()->toArray()[0];
 }