/** * Return the smallest rectangle containing the intersection of this rectangle * and the given rectangle. Note that the region of intersection may consist * of two disjoint rectangles, in which case a single rectangle spanning both * of them is returned. *#/ * public S2LatLngRect intersection(S2LatLngRect other) { * R1Interval intersectLat = lat.intersection(other.lat); * S1Interval intersectLng = lng.intersection(other.lng); * if (intersectLat.isEmpty() || intersectLng.isEmpty()) { * // The lat/lng ranges must either be both empty or both non-empty. * return empty(); * } * return new S2LatLngRect(intersectLat, intersectLng); * } * * /** * Return a rectangle that contains the convolution of this rectangle with a * cap of the given angle. This expands the rectangle by a fixed distance (as * opposed to growing the rectangle in latitude-longitude space). The returned * rectangle includes all points whose minimum distance to the original * rectangle is at most the given angle. *#/ * public S2LatLngRect convolveWithCap(S1Angle angle) { * // The most straightforward approach is to build a cap centered on each * // vertex and take the union of all the bounding rectangles (including the * // original rectangle; this is necessary for very large rectangles). * * // Optimization: convert the angle to a height exactly once. * S2Cap cap = S2Cap.fromAxisAngle(new S2Point(1, 0, 0), angle); * * S2LatLngRect r = this; * for (int k = 0; k < 4; ++k) { * S2Cap vertexCap = S2Cap.fromAxisHeight(getVertex(k).toPoint(), cap * .height()); * r = r.union(vertexCap.getRectBound()); * } * return r; * } * * /** Return the surface area of this rectangle on the unit sphere. *#/ * public double area() { * if (isEmpty()) { * return 0; * } * * // This is the size difference of the two spherical caps, multiplied by * // the longitude ratio. * return lng().getLength() * Math.abs(Math.sin(latHi().radians()) - Math.sin(latLo().radians())); * } * * /** Return true if two rectangles contains the same set of points. *#/ * @Override * public boolean equals(Object that) { * if (!(that instanceof S2LatLngRect)) { * return false; * } * S2LatLngRect otherRect = (S2LatLngRect) that; * return lat().equals(otherRect.lat()) && lng().equals(otherRect.lng()); * } * * /** * Return true if the latitude and longitude intervals of the two rectangles * are the same up to the given tolerance (see r1interval.h and s1interval.h * for details). *#/ * public boolean approxEquals(S2LatLngRect other, double maxError) { * return (lat.approxEquals(other.lat, maxError) && lng.approxEquals( * other.lng, maxError)); * } * * public boolean approxEquals(S2LatLngRect other) { * return approxEquals(other, 1e-15); * } * * @Override * public int hashCode() { * int value = 17; * value = 37 * value + lat.hashCode(); * return (37 * value + lng.hashCode()); * } * * // ////////////////////////////////////////////////////////////////////// * // S2Region interface (see {@code S2Region} for details): * * @Override * public S2Region clone() { * return new S2LatLngRect(this.lo(), this.hi()); * } */ public function getCapBound() { // We consider two possible bounding caps, one whose axis passes // through the center of the lat-long rectangle and one whose axis // is the north or south pole. We return the smaller of the two caps. if ($this->isEmpty()) { echo __METHOD__ . " empty\n"; return S2Cap::sempty(); } $poleZ = null; $poleAngle = null; if ($this->lat->lo() + $this->lat->hi() < 0) { // South pole axis yields smaller cap. $poleZ = -1; $poleAngle = S2::M_PI_2 + $this->lat->hi(); } else { $poleZ = 1; $poleAngle = S2::M_PI_2 - $this->lat->lo(); } $poleCap = S2Cap::fromAxisAngle(new S2Point(0, 0, $poleZ), S1Angle::sradians($poleAngle)); // For bounding rectangles that span 180 degrees or less in longitude, the // maximum cap size is achieved at one of the rectangle vertices. For // rectangles that are larger than 180 degrees, we punt and always return a // bounding cap centered at one of the two poles. $lngSpan = $this->lng->hi() - $this->lng->lo(); if (S2::IEEEremainder($lngSpan, 2 * S2::M_PI) >= 0) { if ($lngSpan < 2 * S2::M_PI) { $midCap = S2Cap::fromAxisAngle($this->getCenter()->toPoint(), S1Angle::sradians(0)); for ($k = 0; $k < 4; ++$k) { $midCap = $midCap->addPoint($this->getVertex($k)->toPoint()); } if ($midCap->height() < $poleCap->height()) { return $midCap; } } } return $poleCap; }
/** * Return the distance (measured along the surface of the sphere) to the given * point. */ public function getDistance(S2LatLng $o) { // This implements the Haversine formula, which is numerically stable for // small distances but only gets about 8 digits of precision for very large // distances (e.g. antipodal points). Note that 8 digits is still accurate // to within about 10cm for a sphere the size of the Earth. // // This could be fixed with another sin() and cos() below, but at that point // you might as well just convert both arguments to S2Points and compute the // distance that way (which gives about 15 digits of accuracy for all // distances). $lat1 = self::lat()->radians(); $lat2 = $o->lat()->radians(); $lng1 = self::lng()->radians(); $lng2 = $o->lng()->radians(); $dlat = sin(0.5 * ($lat2 - $lat1)); $dlng = sin(0.5 * ($lng2 - $lng1)); $x = $dlat * $dlat + $dlng * $dlng * cos($lat1) * cos($lat2); return S1Angle::sradians(2 * atan2(sqrt($x), sqrt(max(0.0, 1.0 - $x)))); // Return the distance (measured along the surface of the sphere) to the // given S2LatLng. This is mathematically equivalent to: // // S1Angle::FromRadians(ToPoint().Angle(o.ToPoint()) // // but this implementation is slightly more efficient. }
/** Returns the longitude of this point as a new S1Angle. */ public function lng() { return S1Angle::sradians($this->lngRadians); }
/** * Return the cap opening angle in radians, or a negative number for empty * caps. */ public function angle() { // This could also be computed as acos(1 - height_), but the following // formula is much more accurate when the cap height is small. It // follows from the relationship h = 1 - cos(theta) = 2 sin^2(theta/2). if ($this->isEmpty()) { return S1Angle::sradians(-1); } return S1Angle::sradians(2 * asin(sqrt(0.5 * $this->height))); }