/** * Calculate the distance between two locations. * * Note, this is an estimate. The further the two places are from each other * the less accurate the distance calculation will be. This method also assumes * all locations are at the equator. */ public function distance(LocationInterface $location1, LocationInterface $location2) { $radLong1 = deg2rad($location1->longitude()); $radLat1 = deg2rad($location1->latitude()); $radLong2 = deg2rad($location2->longitude()); $radLat2 = deg2rad($location2->latitude()); $radius = $this->earthRadius(($location1->latitude() + $location2->latitude()) / 2); $cosangle = cos($radLat1) * cos($radLat2) * (cos($radLong1) * cos($radLong2) + sin($radLong1) * sin($radLong2)) + sin($radLat1) * sin($radLat2); return acos($cosangle) * $radius; }
/** * Calculate the distance between two locations. * * This uses Vincenty's formulae. For more information on this method * see https://en.wikipedia.org/wiki/Vincenty's_formulae. There is also lots * of good info at http://www.linz.govt.nz/geodetic/. * * Note, Vincenty's formulae is not known for its performance. It's more * accurate than other methods but takes more processing time to calculate. */ public function distance(LocationInterface $location1, LocationInterface $location2) { $lat1 = deg2rad($location1->latitude()); $lat2 = deg2rad($location2->latitude()); $lon1 = deg2rad($location1->longitude()); $lon2 = deg2rad($location2->longitude()); // WGS-84 ellipsoid $a = $this->earthRadiusSemimajor(); $b = $this->earthRadiusSemiminor(); $f = $this->earthFlattening(); $L = $lon2 - $lon1; $U1 = atan((1 - $f) * tan($lat1)); $U2 = atan((1 - $f) * tan($lat2)); $sinU1 = sin($U1); $cosU1 = cos($U1); $sinU2 = sin($U2); $cosU2 = cos($U2); $lambda = $L; $lambdaP = 2 * pi(); $iterLimit = 20; while (abs($lambda - $lambdaP) > 1.0E-12 && --$iterLimit > 0) { $sinLambda = sin($lambda); $cosLambda = cos($lambda); $sinSigma = sqrt($cosU2 * $sinLambda * ($cosU2 * $sinLambda) + ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda) * ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda)); if ($sinSigma == 0) { return 0; } $cosSigma = $sinU1 * $sinU2 + $cosU1 * $cosU2 * $cosLambda; $sigma = atan2($sinSigma, $cosSigma); // was atan2 $alpha = asin($cosU1 * $cosU2 * $sinLambda / $sinSigma); $cosSqAlpha = cos($alpha) * cos($alpha); $cos2SigmaM = $cosSigma - 2 * $sinU1 * $sinU2 / $cosSqAlpha; $C = $f / 16 * $cosSqAlpha * (4 + $f * (4 - 3 * $cosSqAlpha)); $lambdaP = $lambda; $lambda = $L + (1 - $C) * $f * sin($alpha) * ($sigma + $C * $sinSigma * ($cos2SigmaM + $C * $cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM))); } if ($iterLimit == 0) { return FALSE; // Oh no... we have a failure. } $uSq = $cosSqAlpha * ($a * $a - $b * $b) / ($b * $b); $A = 1 + $uSq / 16384 * (4096 + $uSq * (-768 + $uSq * (320 - 175 * $uSq))); $B = $uSq / 1024 * (256 + $uSq * (-128 + $uSq * (74 - 47 * $uSq))); $deltaSigma = $B * $sinSigma * ($cos2SigmaM + $B / 4 * ($cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM) - $B / 6 * $cos2SigmaM * (-3 + 4 * $sinSigma * $sinSigma) * (-3 + 4 * $cos2SigmaM * $cos2SigmaM))); $s = $b * $A * ($sigma - $deltaSigma); return round($s, 3); // round to 1mm precision; }