コード例 #1
7
 /**
  * Return the smallest rectangle containing the intersection of this rectangle
  * and the given rectangle. Note that the region of intersection may consist
  * of two disjoint rectangles, in which case a single rectangle spanning both
  * of them is returned.
  *#/
  * public S2LatLngRect intersection(S2LatLngRect other) {
  * R1Interval intersectLat = lat.intersection(other.lat);
  * S1Interval intersectLng = lng.intersection(other.lng);
  * if (intersectLat.isEmpty() || intersectLng.isEmpty()) {
  * // The lat/lng ranges must either be both empty or both non-empty.
  * return empty();
  * }
  * return new S2LatLngRect(intersectLat, intersectLng);
  * }
  *
  * /**
  * Return a rectangle that contains the convolution of this rectangle with a
  * cap of the given angle. This expands the rectangle by a fixed distance (as
  * opposed to growing the rectangle in latitude-longitude space). The returned
  * rectangle includes all points whose minimum distance to the original
  * rectangle is at most the given angle.
  *#/
  * public S2LatLngRect convolveWithCap(S1Angle angle) {
  * // The most straightforward approach is to build a cap centered on each
  * // vertex and take the union of all the bounding rectangles (including the
  * // original rectangle; this is necessary for very large rectangles).
  *
  * // Optimization: convert the angle to a height exactly once.
  * S2Cap cap = S2Cap.fromAxisAngle(new S2Point(1, 0, 0), angle);
  *
  * S2LatLngRect r = this;
  * for (int k = 0; k < 4; ++k) {
  * S2Cap vertexCap = S2Cap.fromAxisHeight(getVertex(k).toPoint(), cap
  * .height());
  * r = r.union(vertexCap.getRectBound());
  * }
  * return r;
  * }
  *
  * /** Return the surface area of this rectangle on the unit sphere. *#/
  * public double area() {
  * if (isEmpty()) {
  * return 0;
  * }
  *
  * // This is the size difference of the two spherical caps, multiplied by
  * // the longitude ratio.
  * return lng().getLength() * Math.abs(Math.sin(latHi().radians()) - Math.sin(latLo().radians()));
  * }
  *
  * /** Return true if two rectangles contains the same set of points. *#/
  * @Override
  * public boolean equals(Object that) {
  * if (!(that instanceof S2LatLngRect)) {
  * return false;
  * }
  * S2LatLngRect otherRect = (S2LatLngRect) that;
  * return lat().equals(otherRect.lat()) && lng().equals(otherRect.lng());
  * }
  *
  * /**
  * Return true if the latitude and longitude intervals of the two rectangles
  * are the same up to the given tolerance (see r1interval.h and s1interval.h
  * for details).
  *#/
  * public boolean approxEquals(S2LatLngRect other, double maxError) {
  * return (lat.approxEquals(other.lat, maxError) && lng.approxEquals(
  * other.lng, maxError));
  * }
  *
  * public boolean approxEquals(S2LatLngRect other) {
  * return approxEquals(other, 1e-15);
  * }
  *
  * @Override
  * public int hashCode() {
  * int value = 17;
  * value = 37 * value + lat.hashCode();
  * return (37 * value + lng.hashCode());
  * }
  *
  * // //////////////////////////////////////////////////////////////////////
  * // S2Region interface (see {@code S2Region} for details):
  *
  * @Override
  * public S2Region clone() {
  * return new S2LatLngRect(this.lo(), this.hi());
  * }
  */
 public function getCapBound()
 {
     // We consider two possible bounding caps, one whose axis passes
     // through the center of the lat-long rectangle and one whose axis
     // is the north or south pole. We return the smaller of the two caps.
     if ($this->isEmpty()) {
         echo __METHOD__ . " empty\n";
         return S2Cap::sempty();
     }
     $poleZ = null;
     $poleAngle = null;
     if ($this->lat->lo() + $this->lat->hi() < 0) {
         // South pole axis yields smaller cap.
         $poleZ = -1;
         $poleAngle = S2::M_PI_2 + $this->lat->hi();
     } else {
         $poleZ = 1;
         $poleAngle = S2::M_PI_2 - $this->lat->lo();
     }
     $poleCap = S2Cap::fromAxisAngle(new S2Point(0, 0, $poleZ), S1Angle::sradians($poleAngle));
     // For bounding rectangles that span 180 degrees or less in longitude, the
     // maximum cap size is achieved at one of the rectangle vertices. For
     // rectangles that are larger than 180 degrees, we punt and always return a
     // bounding cap centered at one of the two poles.
     $lngSpan = $this->lng->hi() - $this->lng->lo();
     if (S2::IEEEremainder($lngSpan, 2 * S2::M_PI) >= 0) {
         if ($lngSpan < 2 * S2::M_PI) {
             $midCap = S2Cap::fromAxisAngle($this->getCenter()->toPoint(), S1Angle::sradians(0));
             for ($k = 0; $k < 4; ++$k) {
                 $midCap = $midCap->addPoint($this->getVertex($k)->toPoint());
             }
             if ($midCap->height() < $poleCap->height()) {
                 return $midCap;
             }
         }
     }
     return $poleCap;
 }
コード例 #2
0
 /**
  * Return the intersection of this interval with the given interval. Empty
  * intervals do not need to be special-cased.
  */
 public function intersection(R1Interval $y)
 {
     return new R1Interval(max($this->lo(), $y->lo()), min($this->hi(), $y->hi()));
 }
コード例 #3
0
 public function getRectBound()
 {
     if ($this->level > 0) {
         // Except for cells at level 0, the latitude and longitude extremes are
         // attained at the vertices. Furthermore, the latitude range is
         // determined by one pair of diagonally opposite vertices and the
         // longitude range is determined by the other pair.
         //
         // We first determine which corner (i,j) of the cell has the largest
         // absolute latitude. To maximize latitude, we want to find the point in
         // the cell that has the largest absolute z-coordinate and the smallest
         // absolute x- and y-coordinates. To do this we look at each coordinate
         // (u and v), and determine whether we want to minimize or maximize that
         // coordinate based on the axis direction and the cell's (u,v) quadrant.
         $u = $this->uv[0][0] + $this->uv[0][1];
         $v = $this->uv[1][0] + $this->uv[1][1];
         $i = S2Projections::getUAxis($this->face)->z == 0 ? $u < 0 ? 1 : 0 : ($u > 0 ? 1 : 0);
         $j = S2Projections::getVAxis($this->face)->z == 0 ? $v < 0 ? 1 : 0 : ($v > 0 ? 1 : 0);
         $lat = R1Interval::fromPointPair($this->getLatitude($i, $j), $this->getLatitude(1 - $i, 1 - $j));
         $lat = $lat->expanded(self::MAX_ERROR)->intersection(S2LatLngRect::fullLat());
         if ($lat->lo() == -S2::M_PI_2 || $lat->hi() == S2::M_PI_2) {
             return new S2LatLngRect($lat, S1Interval::full());
         }
         $lng = S1Interval::fromPointPair($this->getLongitude($i, 1 - $j), $this->getLongitude(1 - $i, $j));
         return new S2LatLngRect($lat, $lng->expanded(self::MAX_ERROR));
     }
     // The face centers are the +X, +Y, +Z, -X, -Y, -Z axes in that order.
     // assert (S2Projections.getNorm(face).get(face % 3) == ((face < 3) ? 1 : -1));
     switch ($this->face) {
         case 0:
             return new S2LatLngRect(new R1Interval(-S2::M_PI_4, S2::M_PI_4), new S1Interval(-S2::M_PI_4, S2::M_PI_4));
         case 1:
             return new S2LatLngRect(new R1Interval(-S2::M_PI_4, S2::M_PI_4), new S1Interval(S2::M_PI_4, 3 * S2::M_PI_4));
         case 2:
             return new S2LatLngRect(new R1Interval(POLE_MIN_LAT, S2::M_PI_2), new S1Interval(-S2::M_PI, S2::M_PI));
         case 3:
             return new S2LatLngRect(new R1Interval(-S2::M_PI_4, S2::M_PI_4), new S1Interval(3 * S2::M_PI_4, -3 * S2::M_PI_4));
         case 4:
             return new S2LatLngRect(new R1Interval(-S2::M_PI_4, S2::M_PI_4), new S1Interval(-3 * S2::M_PI_4, -S2::M_PI_4));
         default:
             return new S2LatLngRect(new R1Interval(-S2::M_PI_2, -POLE_MIN_LAT), new S1Interval(-S2::M_PI, S2::M_PI));
     }
 }