コード例 #1
0
ファイル: index.php プロジェクト: Harry27PL/si
function learn(NeuronSigmoidal $neuron, array $trainingDatas)
{
    /* @var $trainingDatas TrainingData[] */
    test($neuron);
    $i = 0;
    while (true) {
        $errors = [];
        foreach ($trainingDatas as $trainingData) {
            $result = $neuron->calculate($trainingData->getData());
            $error = $neuron->getError($result, $trainingData->getExpectedResult());
            $errors[] = abs($error);
            $neuron->correctWeights($result, $trainingData->getExpectedResult());
        }
        //        echo avg($errors).'<br>';
        if (avg($errors) < 0.05) {
            break;
        }
        //        if ($i % 10 == 0)
        //            test($neuron);
        $i++;
        if ($i == 100) {
            break;
        }
    }
    //    echo '<pre>'.print_r($neuron->getWeights(), true).'</pre>';
    //    echo '<pre>'.print_r($neuron->getBetaWeight(), true).'</pre>';
    echo avg($errors) . '<br>';
    echo $i . '<br>';
}
コード例 #2
0
function hideMovingObjects($imageFiles)
{
    $xMax = 0;
    $yMax = 0;
    $images = array();
    foreach ($imageFiles as $fn) {
        $images[] = imagecreatefromjpeg($fn);
        $info = getimagesize($fn);
        $infoX = $info[0];
        $infoY = $info[1];
        $infoBits = $info['bits'];
        $infoChannels = $info['channels'];
        $xMax = max($xMax, $infoX);
        $yMax = max($yMax, $infoY);
    }
    $colorGd = imagecreatetruecolor($xMax, $yMax);
    $imagesnumber = sizeof($images);
    $trimRounds = ceil(log($imagesnumber) * log($imagesnumber) / 2);
    $trimStop = $imagesnumber - $trimRounds - $trimRounds;
    //for all images and all pixel
    //calculate the Trimmed mean of color
    for ($x = 0; $x < $xMax; $x++) {
        for ($y = 0; $y < $yMax; $y++) {
            $colorR = array();
            $colorG = array();
            $colorB = array();
            foreach ($images as $img) {
                $colorRgb = imagecolorat($img, $x, $y);
                $colorR[] = RGB::getRed($colorRgb);
                $colorG[] = RGB::getGreen($colorRgb);
                $colorB[] = RGB::getBlue($colorRgb);
            }
            sort($colorR);
            sort($colorG);
            sort($colorB);
            $colorRed = avg(array_slice($colorR, $trimRounds, $trimStop));
            $colorGreen = avg(array_slice($colorG, $trimRounds, $trimStop));
            $colorBlue = avg(array_slice($colorB, $trimRounds, $trimStop));
            imagesetpixel($colorGd, $x, $y, RGB::colorSet($colorRed, $colorGreen, $colorBlue));
        }
    }
    //done return the merged image!
    //imagepng($colorGd, "last.jpg" );
    return $colorGd;
}
コード例 #3
0
ファイル: checkConnexions.php プロジェクト: cygeorgel/admin
 /* Upload */
 $i = 0;
 do {
     $uploadNow = $datas['upload'][count($datas['upload']) - 1 - $i]->value;
     $i++;
 } while ($uploadNow == null);
 $uploadNow = avg(array_reverse(array_slice($datas['upload'], -12 - $i, 12)));
 $uploadLast = avg(array_reverse(array_splice($datas['upload'], 0, 12)));
 /* Download */
 $i = 0;
 do {
     $downloadNow = $datas['download'][count($datas['download']) - 1 - $i]->value;
     $i++;
 } while ($downloadNow == null);
 $downloadNow = avg(array_reverse(array_slice($datas['download'], -12 - $i, 12)));
 $downloadLast = avg(array_splice($datas['download'], 0, 12));
 if ($ping && $uploadLast && $uploadNow && $downloadNow && $downloadLast) {
     $insertStat->execute();
 }
 echo $service . " : {$ping} : {$uploadNow} : {$uploadLast} : {$downloadNow} : {$downloadLast}<br/>";
 /* Détection des erreurs */
 $errors = array();
 /* Ping */
 if ($ping > $config['pingDanger']) {
     $errors[] = '<span class="text-danger">Ping ' . round($ping, 2) . '</span>';
 } elseif ($ping > $config['pingWarn']) {
     $errors[] = '<span class="text-warning">Ping ' . round($ping, 2) . '</span>';
 }
 /* Upload */
 if (!$uploadNow) {
     $uploadPercent = 100;
コード例 #4
0
ファイル: index.php プロジェクト: Harry27PL/si
function learn(NeuralNetwork $neuralNetwork, array $trainingDatas)
{
    /* @var $trainingDatas TrainingData[] */
    test($neuralNetwork);
    $historicErrors = [];
    $i = 0;
    while (true) {
        $errors = [];
        /*?>
          <table style=""><tr>
              <th>dane</th>
              <th>wynik</th>
              <th>spodziewany</th>
              <th>błąd</th>
          </tr><?php*/
        foreach ($trainingDatas as $trainingData) {
            /*?><tr><?php*/
            $result = $neuralNetwork->calculate($trainingData->getData());
            $error = $neuralNetwork->getError($result, $trainingData->getExpectedResult());
            $errors[] = $error;
            /*?><td><?php foreach($trainingData->getData() as $v) { echo round($v, 2).'     '; } ?></td><?php
                        ?><td><?= round($result[0], 2) ?></td><?php
                        ?><td><?= round($trainingData->getExpectedResult()[0], 2) ?></td><?php
                        ?><td><?= round($error, 2) ?></td><?php
            
                        ?><td><?php*/
            $neuralNetwork->correctWeights($result, $trainingData->getExpectedResult());
            /*?></td><?php
            
                        ?></tr><?php*/
        }
        //        if ($i % 5000 == 0) {
        //            test($neuralNetwork);
        //        }
        /*?></table><?php*/
        //        test($neuralNetwork);
        //        echo '<div style="width: '.(avg($errors) * 1000).'px; height: 1px; background: #666;"></div>';
        //        echo '<b>'.round(avg($errors), 3).'</b><br>';
        if (avg($errors) < 0.01) {
            return;
        }
        $i++;
        if ($i > 1) {
            $lastHistoricErrors = array_slice($historicErrors, -50);
            if (avg($lastHistoricErrors) > avg($historicErrors)) {
                $historicErrors = [];
                $i = 0;
                test($neuralNetwork);
                $neuralNetwork->rerandomizeWeights();
                //test($neuralNetwork);
            }
        }
        $historicErrors[] = avg($errors);
        if ($i == 100000) {
            echo 'break';
            break;
        }
        shuffle($trainingDatas);
    }
}
コード例 #5
0
    }
    fclose($file_count);
    @(list($today, $yesterday, $total, $date, $days) = split("%", $data));
    echo ceil($total / $days);
}
?>
			
						Đang online: <?php 
echo online();
?>
 <br>
						Truy cập hôm nay: <?php 
echo today();
?>
 <br>
						Truy cập hôm qua: <?php 
echo yesterday();
?>
 <br>
						Tổng số truy cập: <?php 
total();
?>
 <br>
						Truy cập trung bình: <?php 
avg();
?>
 <br>
				   
    	</td>
    </tr> 
</table>
コード例 #6
0
        $sum += $r;
    }
    // echo "min=".$min."*";
    return $sum -= $min;
}
function sev($n)
{
    $sum = 0;
    $min = 20;
    for ($i = 0; $i < $n; $i++) {
        $t = roll(4);
        if ($min > $t) {
            $min = $t;
        }
        $sum += $t;
    }
    return ($sum - $min) / ($n - 1);
}
function avg($n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++) {
        $sum += sev(7);
    }
    echo $sum / $n . "<br />";
}
avg(1000);
?>


</html>
コード例 #7
0
ファイル: index.php プロジェクト: Harry27PL/si
function learn(NeuralNetwork $neuralNetwork, array $trainingDatas)
{
    /* @var $trainingDatas TrainingData[] */
    test($neuralNetwork);
    $historicErrors = [];
    $i = 0;
    while (true) {
        $errors = [];
        /*?>
          <table style="left: <?= $i * 400 ?>px; top: 0px; position: absolute; display: none;"><tr>
              <th>dane</th>
              <th>wynik</th>
              <th>spodziewany</th>
              <th>błąd</th>
              <th>poprawa</th>
          </tr><?php*/
        foreach ($trainingDatas as $trainingData) {
            /*?><tr><?php*/
            $result = $neuralNetwork->calculate($trainingData->getData());
            $error = $neuralNetwork->getError($result, $trainingData->getExpectedResult());
            $errors[] = $error;
            /*?><td><?= round($trainingData->getData()[0], 2) ?></td><?php
              ?><td><?= round($result[0], 2) ?></td><?php
              ?><td><?= round($trainingData->getExpectedResult()[0], 2) ?></td><?php
              ?><td><?= round($error, 2) ?></td><?php*/
            /*?><td><?php*/
            $neuralNetwork->correctWeights($result, $trainingData->getExpectedResult());
            /*?></td><?php
            
                        ?></tr><?php*/
            if ($i % 100 == 0) {
                //    test($neuralNetwork);
            }
        }
        /*?></table><?php*/
        echo '<div style="width: ' . avg($errors) * 1000 . 'px; height: 1px; background: #666;"></div>';
        //echo '<b>'.round(avg($errors), 3).'</b><br>';
        if (avg($errors) < 0.05) {
            return;
        }
        $i++;
        if ($i > 1) {
            $lastHistoricErrors = array_slice($historicErrors, -50);
            if (avg($lastHistoricErrors) > avg($historicErrors)) {
                $historicErrors = [];
                $i = 0;
                test($neuralNetwork);
                $neuralNetwork->rerandomizeWeights();
                test($neuralNetwork);
            }
        }
        $historicErrors[] = avg($errors);
        if ($i == 5000) {
            break;
        }
        shuffle($trainingDatas);
    }
}
コード例 #8
0
ファイル: Main.php プロジェクト: Harry27PL/si
    function test(NeuralNetwork $neuralNetwork, $withError = true)
    {
        $accuracy = [];
        $errors = [];
        foreach ($this->allTestData as $testData) {
            $result = $neuralNetwork->calculate($testData->getData());
            $resultBool = 0;
            if ($result[0] < 0 && $result[1] > 0 && $testData->getExpectedResult() == [-1, 1]) {
                $resultBool = 1;
            }
            if ($result[0] > 0 && $result[1] < 0 && $testData->getExpectedResult() == [1, -1]) {
                $resultBool = 1;
            }
            $accuracy[] = $resultBool;
            $errors[] = $neuralNetwork->getError($result, $testData->getExpectedResult());
        }
        echo '<div>Skuteczność <b>' . avg($accuracy) . '</b></div>';
        echo '<div>Błąd <b>' . avg($errors) . '</b></div>';
        //    echo '<pre>'.print_r($neuralNetwork->toArray(), true).'</pre>';
        ?>

            <div class="graphs">
                <?php 
        if ($withError) {
            ?>
                    <div class="graphError" data-data="<?php 
            echo htmlspecialchars(json_encode($neuralNetwork->getHistoricErrors()));
            ?>
"></div>
                <?php 
        }
        ?>
                <div class="graphNetwork" data-data="<?php 
        echo htmlspecialchars(json_encode($neuralNetwork->toArray()), ENT_QUOTES, 'UTF-8');
        ?>
"></div>
            </div>
            <script>draw()</script>

        <?php 
        flush();
        ob_flush();
    }
コード例 #9
0
ファイル: analyzeNT.php プロジェクト: AKSW/aksw-commons
    $table["classes (ignored)"] = count($classes);
    $table["Objects"] = $resourceobjects;
    $table["Triples"] = $triples;
    $table["Triples_with_Object_ratio"] = pretty($resourceobjects, $triples);
    $table["unique_subjects"] = count($uniquesubjects);
    $table["subsAreObjects"] = count($subsAreObjects);
    $table["subsAreObjectsRatio"] = pretty(count($subsAreObjects), count($uniquesubjects));
    $table["avg_indegree_subjects"] = avg($subsAreObjects);
    $table["avg_outdegree_subjects"] = avg($uniquesubjects);
    $table["unique_predicates"] = count($uniquepredicates);
    $table["avg_usage_predicates"] = avg($uniquepredicates);
    $table["unique_objects"] = count($uniqueobjects);
    $table["objsAreSubjects"] = count($objsAreSubjects);
    $table["objsAreSubjectsRatio"] = pretty(count($objsAreSubjects), count($uniqueobjects));
    $table["avg_indegree_objects"] = avg($uniqueobjects);
    $table["avg_outdegree_objects"] = avg($objsAreSubjects);
    p($table);
    if ($detailed) {
        echo "classes\n";
        detailed($classes);
        echo "predicates\n";
        detailed($uniquepredicates);
    }
}
//foreach
function detailed($arr)
{
    foreach ($arr as $key => $value) {
        echo "{$key}\t{$value}\n";
    }
    echo "\n\n";
コード例 #10
0
ファイル: gestion_dwes.php プロジェクト: JaRomero95/dwes
    }
}
?>
<form method="post" action="#">
    <p><input type="submit" name="save" value="GUARDAR CAMBIOS"></p>
    <table>
        <tr>
            <th>Alumno</th>
            <th>1ªev</th>
            <th>2ªev</th>
            <th>3ªev</th>
            <th>Final</th>
            <th>x</th>
        </tr>
        <?php 
//        var_dump($_SESSION["alumnos"]);
for ($i = 0; $i < count($_SESSION["alumnos"]); $i++) {
    $_SESSION["alumnos"][$i]["nom"];
    $alumno = $_SESSION["alumnos"][$i];
    echo "<tr>";
    echo "<td><input type='text'class='nom' name='name-" . $i . "' value='" . $alumno["nom"] . "'/></td>";
    echo "<td class='nota'><input type='number' name='ev1-" . $i . "' value='" . $alumno["ev1"] . "'/></td>";
    echo "<td class='nota'><input type='number' name='ev2-" . $i . "' value='" . $alumno["ev2"] . "'/></td>";
    echo "<td class='nota'><input type='number' name='ev3-" . $i . "' value='" . $alumno["ev3"] . "'/></td>";
    echo "<td class='nota'>" . avg($alumno) . "</td>";
    echo "<td style='width:1px'><input type='submit' name='del-" . $i . "' class='submit-img img-del' value=''/></td>";
    echo "</tr>";
}
?>
    </table>
</form>