/** * transpose * * Tranpose matrix * @return Matrix Transposed matrix */ public function transpose() { $R = new Matrix($this->n, $this->m); for ($i = 0; $i < $this->m; ++$i) { for ($j = 0; $j < $this->n; ++$j) { $R->set($j, $i, $this->matrix[$i][$j]); } } return $R; }
/** * Least squares solution of A*X = B * * @param Matrix $B A Matrix with as many rows as A and any number of columns. * @throws MatrixException * @return Matrix Matrix that minimizes the two norm of Q*R*X-B. */ public function solve($B) { if ($B->getRowDimension() == $this->m) { if ($this->isFullRank()) { // Copy right hand side $nx = $B->getColumnDimension(); $X = $B->getArray(); // Compute Y = transpose(Q)*B for ($k = 0; $k < $this->n; ++$k) { for ($j = 0; $j < $nx; ++$j) { $s = 0.0; for ($i = $k; $i < $this->m; ++$i) { $s += $this->QR[$i][$k] * $X[$i][$j]; } $s = -$s / $this->QR[$k][$k]; for ($i = $k; $i < $this->m; ++$i) { $X[$i][$j] += $s * $this->QR[$i][$k]; } } } // Solve R*X = Y; for ($k = $this->n - 1; $k >= 0; --$k) { for ($j = 0; $j < $nx; ++$j) { $X[$k][$j] /= $this->rD[$k]; } for ($i = 0; $i < $k; ++$i) { for ($j = 0; $j < $nx; ++$j) { $X[$i][$j] -= $X[$k][$j] * $this->QR[$i][$k]; } } } $X = new Matrix($X); return $X->getMatrix(0, $this->n - 1, 0, $nx); } else { throw new MatrixException(5); } } else { throw new MatrixException(3); } }