/** Return the leaf cell containing the given S2LatLng. */ public static function fromLatLng(S2LatLng $ll) { return self::fromPoint($ll->toPoint()); }
/** * Return a rectangle that contains all points whose latitude distance from * this rectangle is at most margin.lat(), and whose longitude distance from * this rectangle is at most margin.lng(). In particular, latitudes are * clamped while longitudes are wrapped. Note that any expansion of an empty * interval remains empty, and both components of the given margin must be * non-negative. * * NOTE: If you are trying to grow a rectangle by a certain *distance* on the * sphere (e.g. 5km), use the ConvolveWithCap() method instead. * @return S2LatLngRect */ public function expanded(S2LatLng $margin) { // assert (margin.lat().radians() >= 0 && margin.lng().radians() >= 0); if ($this->isEmpty()) { return $this; } return new S2LatLngRect($this->lat->expanded($margin->lat()->radians())->intersection($this->fullLat()), $this->lng->expanded($margin->lng()->radians())); }
/** * Return the distance (measured along the surface of the sphere) to the given * point. */ public function getDistance(S2LatLng $o) { // This implements the Haversine formula, which is numerically stable for // small distances but only gets about 8 digits of precision for very large // distances (e.g. antipodal points). Note that 8 digits is still accurate // to within about 10cm for a sphere the size of the Earth. // // This could be fixed with another sin() and cos() below, but at that point // you might as well just convert both arguments to S2Points and compute the // distance that way (which gives about 15 digits of accuracy for all // distances). $lat1 = self::lat()->radians(); $lat2 = $o->lat()->radians(); $lng1 = self::lng()->radians(); $lng2 = $o->lng()->radians(); $dlat = sin(0.5 * ($lat2 - $lat1)); $dlng = sin(0.5 * ($lng2 - $lng1)); $x = $dlat * $dlat + $dlng * $dlng * cos($lat1) * cos($lat2); return S1Angle::sradians(2 * atan2(sqrt($x), sqrt(max(0.0, 1.0 - $x)))); // Return the distance (measured along the surface of the sphere) to the // given S2LatLng. This is mathematically equivalent to: // // S1Angle::FromRadians(ToPoint().Angle(o.ToPoint()) // // but this implementation is slightly more efficient. }
public function toDegreesString() { $s2LatLng = new S2LatLng($this); return "(" . $s2LatLng->latDegrees() . ", " . $s2LatLng->lngDegrees() . ")"; }
public function getRectBound() { if ($this->isEmpty()) { return S2LatLngRect::emptya(); } // Convert the axis to a (lat,lng) pair, and compute the cap angle. $axisLatLng = new S2LatLng($this->axis); $capAngle = $this->angle()->radians(); $allLongitudes = false; $lat = array(); $lng = array(); $lng[0] = -S2::M_PI; $lng[1] = S2::M_PI; // Check whether cap includes the south pole. $lat[0] = $axisLatLng->lat()->radians() - $capAngle; if ($lat[0] <= -S2::M_PI_2) { $lat[0] = -S2::M_PI_2; $allLongitudes = true; } // Check whether cap includes the north pole. $lat[1] = $axisLatLng->lat()->radians() + $capAngle; if ($lat[1] >= S2::M_PI_2) { $lat[1] = S2::M_PI_2; $allLongitudes = true; } if (!$allLongitudes) { // Compute the range of longitudes covered by the cap. We use the law // of sines for spherical triangles. Consider the triangle ABC where // A is the north pole, B is the center of the cap, and C is the point // of tangency between the cap boundary and a line of longitude. Then // C is a right angle, and letting a,b,c denote the sides opposite A,B,C, // we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c). // Here "a" is the cap angle, and "c" is the colatitude (90 degrees // minus the latitude). This formula also works for negative latitudes. // // The formula for sin(a) follows from the relationship h = 1 - cos(a). $sinA = sqrt($this->height * (2 - $this->height)); $sinC = cos($axisLatLng->lat()->radians()); if ($sinA <= $sinC) { $angleA = asin($sinA / $sinC); $lng[0] = S2::IEEEremainder($axisLatLng->lng()->radians() - $angleA, 2 * S2::M_PI); $lng[1] = S2::IEEEremainder($axisLatLng->lng()->radians() + $angleA, 2 * S2::M_PI); } } return new S2LatLngRect(new R1Interval($lat[0], $lat[1]), new S1Interval($lng[0], $lng[1])); }