/**
  * __construct Function
  * 
  * Constructor function for this regression model.  Takes two arrays
  * of data that are parallel arrays of independent and dependent
  * observations.
  * 
  * @param array $datax The series of independent variables
  * @param array $datay The series of dependent variables
  * @return LogarithmicRegression An object representing the regression model
  */
 public function __construct($datax, $datay)
 {
     $logx = array();
     foreach ($datax as $x) {
         $logx[] = log($x);
     }
     $this->r = \PHPStats\Stats::correlation($logx, $datay);
     $this->beta = \PHPStats\Stats::covariance($logx, $datay) / \PHPStats\Stats::variance($logx);
     $this->alpha = \PHPStats\Stats::average($datay) - $this->beta * \PHPStats\Stats::average($logx);
 }
 /**
  * __construct Function
  * 
  * Constructor function for this regression model.  Takes two arrays
  * of data that are parallel arrays of independent and dependent
  * observations.
  * 
  * @param array $datax The series of independent variables
  * @param array $datay The series of dependent variables
  * @return ExponentialRegression An object representing the regression model
  */
 public function __construct(array $datax, array $datay)
 {
     $logy = array();
     foreach ($datay as $y) {
         $logy[] = log($y);
     }
     $this->r = \PHPStats\Stats::correlation($datax, $logy);
     $logbeta = \PHPStats\Stats::covariance($datax, $logy) / \PHPStats\Stats::variance($datax);
     $logalpha = \PHPStats\Stats::average($logy) - $logbeta * \PHPStats\Stats::average($datax);
     $this->beta = exp($logbeta);
     $this->alpha = exp($logalpha);
 }
Example #3
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param int $L The population size
 	@param int $m The number of interesting elements in the population
 	@param int $n The number of draws from the population
 	@return float The probability
 */
 static function getCdf($x, $L = 1, $m = 1, $n = 1)
 {
     $x = floor($x);
     $L = floor($L);
     $m = floor($m);
     $n = floor($n);
     if ($L >= 1 && $m >= 0 && $n >= 0) {
         $sum = 0;
         for ($i = 0; $i <= $x; $i++) {
             $sum += \PHPStats\Stats::combinations($m, $i) * \PHPStats\Stats::combinations($L - $m, $n - $i) / \PHPStats\Stats::combinations($L, $n);
         }
         return $sum;
     } else {
         return 0.0;
     }
 }
Example #4
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param float $k Shape parameter
 	@param float $theta Scale parameter
 	@return float The probability
 */
 static function getCdf($x, $k = 1, $theta = 1)
 {
     return \PHPStats\Stats::lowerGamma($k, $x / $theta) / \PHPStats\Stats::gamma($k);
 }
Example #5
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param float $k Shape parameter
 	@return float The probability
 */
 static function getCdf($x, $k = 1)
 {
     return \PHPStats\Stats::lowerGamma($k / 2.0, $x / 2) / \PHPStats\Stats::gamma($k / 2.0);
 }
Example #6
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param float $mu The location parameter. Default 0.0
 	@param float $variance The scale parameter. Default 1.0
 	@return float The probability
 */
 static function getCdf($x, $mu = 0.0, $variance = 1.0)
 {
     return (1 + \PHPStats\Stats::erf(($x - $mu) / sqrt(2 * $variance))) / 2;
 }
Example #7
0
 /**
 	Returns the probability mass function
 	
 	@param float $x The test value
 	@param float $lambda The rate of events
 	@return float The probability
 */
 static function getPmf($x, $lambda = 1)
 {
     return exp(-$lambda) * pow($lambda, $x) / \PHPStats\Stats::factorial($x);
 }
Example #8
0
 /**
  * Returns the probability mass function
  * 
  * @param float $x The test value
  * @param float $p The probability of success per trial
  * @param int $n The number of trials
  * @return float The probability
  */
 public static function getPmf($x, $p = 0.5, $n = 1)
 {
     return \PHPStats\Stats::combinations($n, $x) * pow($p, $x) * pow(1 - $p, $n - $x);
 }
Example #9
0
 /**
  * __construct Function
  * 
  * Constructor function for this regression model.  Takes two arrays
  * of data that are parallel arrays of independent and dependent
  * observations.
  * 
  * @param array $datax The series of independent variables
  * @param array $datay The series of dependent variables
  * @return LinearRegression An object representing the regression model
  */
 public function __construct(array $datax, array $datay)
 {
     $this->beta = \PHPStats\Stats::covariance($datax, $datay) / \PHPStats\Stats::variance($datax);
     $this->alpha = \PHPStats\Stats::average($datay) - $this->beta * \PHPStats\Stats::average($datax);
     $this->r = \PHPStats\Stats::correlation($datax, $datay);
 }
Example #10
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param float $alpha The minimum parameter. Default 0.0
 	@param float $beta The maximum parameter. Default 1.0
 	@return float The probability
 */
 static function getCdf($x, $alpha = 1, $beta = 1)
 {
     return \PHPStats\Stats::regularizedIncompleteBeta($alpha, $beta, $x);
 }
Example #11
0
 /**
 	Returns the cumulative distribution function, the probability of getting the test value or something below it
 	
 	@param float $x The test value
 	@param float $df The degrees of freedeom.  Default 1
 	@return float The probability
 */
 static function getCdf($x, $df = 1)
 {
     $return = 1 - 0.5 * \PHPStats\Stats::regularizedIncompleteBeta($df / 2, 0.5, $df / (pow($x, 2) + $df));
     //Valid only for $x > 0
     if ($x < 0) {
         return 1 - $return;
     } elseif ($x == 0) {
         return 0.5;
     } else {
         return $return;
     }
 }
Example #12
0
 public function test_combinations()
 {
     $this->assertEquals(1, Stats::combinations(1, 1));
     $this->assertEquals(2, Stats::combinations(2, 1));
     $this->assertEquals(6, Stats::combinations(4, 2));
     $this->assertEquals(1, Stats::combinations(5, 5));
     $this->assertEquals(56, Stats::combinations(8, 5));
 }