public function testDecryptPadding() { $des = new DES(Base::MODE_CBC); $des->disablePadding(); // when the key and iv are not specified they should be null padded //$des->setKey(); //$des->setIV(); $des->setPreferredEngine(Base::ENGINE_INTERNAL); $internal = $des->decrypt('d'); $result = pack('H*', '79b305d1ce555221'); $this->assertEquals($result, $internal, 'Failed asserting that the internal engine produced the correct result'); $des->setPreferredEngine(Base::ENGINE_MCRYPT); if ($des->getEngine() == Base::ENGINE_MCRYPT) { $mcrypt = $des->decrypt('d'); $this->assertEquals($result, $mcrypt, 'Failed asserting that the mcrypt engine produced the correct result'); } else { self::markTestSkipped('Unable to initialize mcrypt engine'); } $des->setPreferredEngine(Base::ENGINE_OPENSSL); if ($des->getEngine() == Base::ENGINE_OPENSSL) { $openssl = $des->decrypt('d'); $this->assertEquals($result, $openssl, 'Failed asserting that the OpenSSL engine produced the correct result'); } else { self::markTestSkipped('Unable to initialize OpenSSL engine'); } }
/** * Gets the key. * * @return mixed */ public function getKey() { $fh = fopen($this->key, 'r'); $strmodulas = trim(fgets($fh)); fclose($fh); $des = new DES(); $des->mode = $des::MODE_ECB; $des->setKey($this->pack($this->MerchantID . $this->MerchantID)); $cleartext = $des->decrypt($this->pack($strmodulas)); $hexkey = $this->unpack($cleartext); return strlen($hexkey) <= 40 ? $hexkey : substr($hexkey, 0, 40); }
/** * Break a public or private key down into its constituent components * * @access public * @param string $key * @param string $password optional * @return array */ static function load($key, $password = '') { if (!is_string($key)) { return false; } $components = array('isPublicKey' => strpos($key, 'PUBLIC') !== false); /* Although PKCS#1 proposes a format that public and private keys can use, encrypting them is "outside the scope" of PKCS#1. PKCS#1 then refers you to PKCS#12 and PKCS#15 if you're wanting to protect private keys, however, that's not what OpenSSL* does. OpenSSL protects private keys by adding two new "fields" to the key - DEK-Info and Proc-Type. These fields are discussed here: http://tools.ietf.org/html/rfc1421#section-4.6.1.1 http://tools.ietf.org/html/rfc1421#section-4.6.1.3 DES-EDE3-CBC as an algorithm, however, is not discussed anywhere, near as I can tell. DES-CBC and DES-EDE are discussed in RFC1423, however, DES-EDE3-CBC isn't, nor is its key derivation function. As is, the definitive authority on this encoding scheme isn't the IETF but rather OpenSSL's own implementation. ie. the implementation *is* the standard and any bugs that may exist in that implementation are part of the standard, as well. * OpenSSL is the de facto standard. It's utilized by OpenSSH and other projects */ if (preg_match('#DEK-Info: (.+),(.+)#', $key, $matches)) { $iv = Hex::decode(trim($matches[2])); // remove the Proc-Type / DEK-Info sections as they're no longer needed $key = preg_replace('#^(?:Proc-Type|DEK-Info): .*#m', '', $key); $ciphertext = self::_extractBER($key); if ($ciphertext === false) { $ciphertext = $key; } $crypto = self::getEncryptionObject($matches[1]); $crypto->setKey(self::generateSymmetricKey($password, $iv, $crypto->getKeyLength() >> 3)); $crypto->setIV($iv); $key = $crypto->decrypt($ciphertext); if ($key === false) { return false; } } else { if (self::$format != self::MODE_DER) { $decoded = self::_extractBER($key); if ($decoded !== false) { $key = $decoded; } elseif (self::$format == self::MODE_PEM) { return false; } } } if (ord(Strings::shift($key)) != self::ASN1_SEQUENCE) { return false; } if (ASN1::decodeLength($key) != strlen($key)) { return false; } $tag = ord(Strings::shift($key)); /* intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 631 cons: SEQUENCE 4:d=1 hl=2 l= 1 prim: INTEGER :00 7:d=1 hl=2 l= 13 cons: SEQUENCE 9:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 20:d=2 hl=2 l= 0 prim: NULL 22:d=1 hl=4 l= 609 prim: OCTET STRING ie. PKCS8 keys */ if ($tag == self::ASN1_INTEGER && substr($key, 0, 3) == "0") { Strings::shift($key, 3); $tag = self::ASN1_SEQUENCE; } if ($tag == self::ASN1_SEQUENCE) { $temp = Strings::shift($key, ASN1::decodeLength($key)); if (ord(Strings::shift($temp)) != self::ASN1_OBJECT) { return false; } $length = ASN1::decodeLength($temp); switch (Strings::shift($temp, $length)) { case "*†H†÷\r": // rsaEncryption break; case "*†H†÷\r": // pbeWithMD5AndDES-CBC /* PBEParameter ::= SEQUENCE { salt OCTET STRING (SIZE(8)), iterationCount INTEGER } */ if (ord(Strings::shift($temp)) != self::ASN1_SEQUENCE) { return false; } if (ASN1::decodeLength($temp) != strlen($temp)) { return false; } Strings::shift($temp); // assume it's an octet string $salt = Strings::shift($temp, ASN1::decodeLength($temp)); if (ord(Strings::shift($temp)) != self::ASN1_INTEGER) { return false; } ASN1::decodeLength($temp); list(, $iterationCount) = unpack('N', str_pad($temp, 4, chr(0), STR_PAD_LEFT)); Strings::shift($key); // assume it's an octet string $length = ASN1::decodeLength($key); if (strlen($key) != $length) { return false; } $crypto = new DES(DES::MODE_CBC); $crypto->setPassword($password, 'pbkdf1', 'md5', $salt, $iterationCount); $key = $crypto->decrypt($key); if ($key === false) { return false; } return self::load($key); default: return false; } /* intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 290 cons: SEQUENCE 4:d=1 hl=2 l= 13 cons: SEQUENCE 6:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 17:d=2 hl=2 l= 0 prim: NULL 19:d=1 hl=4 l= 271 prim: BIT STRING */ $tag = ord(Strings::shift($key)); // skip over the BIT STRING / OCTET STRING tag ASN1::decodeLength($key); // skip over the BIT STRING / OCTET STRING length // "The initial octet shall encode, as an unsigned binary integer wtih bit 1 as the least significant bit, the number of // unused bits in the final subsequent octet. The number shall be in the range zero to seven." // -- http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf (section 8.6.2.2) if ($tag == self::ASN1_BITSTRING) { Strings::shift($key); } if (ord(Strings::shift($key)) != self::ASN1_SEQUENCE) { return false; } if (ASN1::decodeLength($key) != strlen($key)) { return false; } $tag = ord(Strings::shift($key)); } if ($tag != self::ASN1_INTEGER) { return false; } $length = ASN1::decodeLength($key); $temp = Strings::shift($key, $length); if (strlen($temp) != 1 || ord($temp) > 2) { $components['modulus'] = new BigInteger($temp, 256); Strings::shift($key); // skip over self::ASN1_INTEGER $length = ASN1::decodeLength($key); $components[$components['isPublicKey'] ? 'publicExponent' : 'privateExponent'] = new BigInteger(Strings::shift($key, $length), 256); return $components; } if (ord(Strings::shift($key)) != self::ASN1_INTEGER) { return false; } $length = ASN1::decodeLength($key); $components['modulus'] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['publicExponent'] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['privateExponent'] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['primes'] = array(1 => new BigInteger(Strings::shift($key, $length), 256)); Strings::shift($key); $length = ASN1::decodeLength($key); $components['primes'][] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['exponents'] = array(1 => new BigInteger(Strings::shift($key, $length), 256)); Strings::shift($key); $length = ASN1::decodeLength($key); $components['exponents'][] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['coefficients'] = array(2 => new BigInteger(Strings::shift($key, $length), 256)); if (!empty($key)) { if (ord(Strings::shift($key)) != self::ASN1_SEQUENCE) { return false; } ASN1::decodeLength($key); while (!empty($key)) { if (ord(Strings::shift($key)) != self::ASN1_SEQUENCE) { return false; } ASN1::decodeLength($key); $key = substr($key, 1); $length = ASN1::decodeLength($key); $components['primes'][] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['exponents'][] = new BigInteger(Strings::shift($key, $length), 256); Strings::shift($key); $length = ASN1::decodeLength($key); $components['coefficients'][] = new BigInteger(Strings::shift($key, $length), 256); } } return $components; }
/** * Break a public or private key down into its constituant components * * @access private * @see _convertPublicKey() * @see _convertPrivateKey() * @param String $key * @param Integer $type * @return Array */ function _parseKey($key, $type) { if ($type != CRYPT_RSA_PUBLIC_FORMAT_RAW && !is_string($key)) { return false; } switch ($type) { case CRYPT_RSA_PUBLIC_FORMAT_RAW: if (!is_array($key)) { return false; } $components = array(); switch (true) { case isset($key['e']): $components['publicExponent'] = $key['e']->copy(); break; case isset($key['exponent']): $components['publicExponent'] = $key['exponent']->copy(); break; case isset($key['publicExponent']): $components['publicExponent'] = $key['publicExponent']->copy(); break; case isset($key[0]): $components['publicExponent'] = $key[0]->copy(); } switch (true) { case isset($key['n']): $components['modulus'] = $key['n']->copy(); break; case isset($key['modulo']): $components['modulus'] = $key['modulo']->copy(); break; case isset($key['modulus']): $components['modulus'] = $key['modulus']->copy(); break; case isset($key[1]): $components['modulus'] = $key[1]->copy(); } return isset($components['modulus']) && isset($components['publicExponent']) ? $components : false; case CRYPT_RSA_PRIVATE_FORMAT_PKCS1: case CRYPT_RSA_PUBLIC_FORMAT_PKCS1: /* Although PKCS#1 proposes a format that public and private keys can use, encrypting them is "outside the scope" of PKCS#1. PKCS#1 then refers you to PKCS#12 and PKCS#15 if you're wanting to protect private keys, however, that's not what OpenSSL* does. OpenSSL protects private keys by adding two new "fields" to the key - DEK-Info and Proc-Type. These fields are discussed here: http://tools.ietf.org/html/rfc1421#section-4.6.1.1 http://tools.ietf.org/html/rfc1421#section-4.6.1.3 DES-EDE3-CBC as an algorithm, however, is not discussed anywhere, near as I can tell. DES-CBC and DES-EDE are discussed in RFC1423, however, DES-EDE3-CBC isn't, nor is its key derivation function. As is, the definitive authority on this encoding scheme isn't the IETF but rather OpenSSL's own implementation. ie. the implementation *is* the standard and any bugs that may exist in that implementation are part of the standard, as well. * OpenSSL is the de facto standard. It's utilized by OpenSSH and other projects */ if (preg_match('#DEK-Info: (.+),(.+)#', $key, $matches)) { $iv = pack('H*', trim($matches[2])); $symkey = pack('H*', md5($this->password . substr($iv, 0, 8))); // symkey is short for symmetric key $symkey .= pack('H*', md5($symkey . $this->password . substr($iv, 0, 8))); // remove the Proc-Type / DEK-Info sections as they're no longer needed $key = preg_replace('#^(?:Proc-Type|DEK-Info): .*#m', '', $key); $ciphertext = $this->_extractBER($key); if ($ciphertext === false) { $ciphertext = $key; } switch ($matches[1]) { case 'AES-256-CBC': $crypto = new AES(); break; case 'AES-128-CBC': $symkey = substr($symkey, 0, 16); $crypto = new AES(); break; case 'DES-EDE3-CFB': $crypto = new TripleDES(CRYPT_DES_MODE_CFB); break; case 'DES-EDE3-CBC': $symkey = substr($symkey, 0, 24); $crypto = new TripleDES(); break; case 'DES-CBC': $crypto = new DES(); break; default: return false; } $crypto->setKey($symkey); $crypto->setIV($iv); $decoded = $crypto->decrypt($ciphertext); } else { $decoded = $this->_extractBER($key); } if ($decoded !== false) { $key = $decoded; } $components = array(); if (ord($this->_string_shift($key)) != CRYPT_RSA_ASN1_SEQUENCE) { return false; } if ($this->_decodeLength($key) != strlen($key)) { return false; } $tag = ord($this->_string_shift($key)); /* * intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 631 cons: SEQUENCE 4:d=1 hl=2 l= 1 prim: INTEGER :00 7:d=1 hl=2 l= 13 cons: SEQUENCE 9:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 20:d=2 hl=2 l= 0 prim: NULL 22:d=1 hl=4 l= 609 prim: OCTET STRING */ if ($tag == CRYPT_RSA_ASN1_INTEGER && substr($key, 0, 3) == "0") { $this->_string_shift($key, 3); $tag = CRYPT_RSA_ASN1_SEQUENCE; } if ($tag == CRYPT_RSA_ASN1_SEQUENCE) { /* * intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 290 cons: SEQUENCE 4:d=1 hl=2 l= 13 cons: SEQUENCE 6:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 17:d=2 hl=2 l= 0 prim: NULL 19:d=1 hl=4 l= 271 prim: BIT STRING */ $this->_string_shift($key, $this->_decodeLength($key)); $tag = ord($this->_string_shift($key)); // skip over the BIT STRING / OCTET STRING tag $this->_decodeLength($key); // skip over the BIT STRING / OCTET STRING length // "The initial octet shall encode, as an unsigned binary integer wtih bit 1 as the least significant bit, the number of // unused bits in the final subsequent octet. The number shall be in the range zero to seven." // -- http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf (section 8.6.2.2) if ($tag == CRYPT_RSA_ASN1_BITSTRING) { $this->_string_shift($key); } if (ord($this->_string_shift($key)) != CRYPT_RSA_ASN1_SEQUENCE) { return false; } if ($this->_decodeLength($key) != strlen($key)) { return false; } $tag = ord($this->_string_shift($key)); } if ($tag != CRYPT_RSA_ASN1_INTEGER) { return false; } $length = $this->_decodeLength($key); $temp = $this->_string_shift($key, $length); if (strlen($temp) != 1 || ord($temp) > 2) { $components['modulus'] = new BigInteger($temp, 256); $this->_string_shift($key); // skip over CRYPT_RSA_ASN1_INTEGER $length = $this->_decodeLength($key); $components[$type == CRYPT_RSA_PUBLIC_FORMAT_PKCS1 ? 'publicExponent' : 'privateExponent'] = new BigInteger($this->_string_shift($key, $length), 256); return $components; } if (ord($this->_string_shift($key)) != CRYPT_RSA_ASN1_INTEGER) { return false; } $length = $this->_decodeLength($key); $components['modulus'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['publicExponent'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['privateExponent'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['primes'] = array(1 => new BigInteger($this->_string_shift($key, $length), 256)); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['primes'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'] = array(1 => new BigInteger($this->_string_shift($key, $length), 256)); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['coefficients'] = array(2 => new BigInteger($this->_string_shift($key, $length), 256)); if (!empty($key)) { if (ord($this->_string_shift($key)) != CRYPT_RSA_ASN1_SEQUENCE) { return false; } $this->_decodeLength($key); while (!empty($key)) { if (ord($this->_string_shift($key)) != CRYPT_RSA_ASN1_SEQUENCE) { return false; } $this->_decodeLength($key); $key = substr($key, 1); $length = $this->_decodeLength($key); $components['primes'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['coefficients'][] = new BigInteger($this->_string_shift($key, $length), 256); } } return $components; case CRYPT_RSA_PUBLIC_FORMAT_OPENSSH: $parts = explode(' ', $key, 3); $key = isset($parts[1]) ? base64_decode($parts[1]) : false; if ($key === false) { return false; } $comment = isset($parts[2]) ? $parts[2] : false; $cleanup = substr($key, 0, 11) == "ssh-rsa"; if (strlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $publicExponent = new BigInteger($this->_string_shift($key, $length), -256); if (strlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $modulus = new BigInteger($this->_string_shift($key, $length), -256); if ($cleanup && strlen($key)) { if (strlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $realModulus = new BigInteger($this->_string_shift($key, $length), -256); return strlen($key) ? false : array('modulus' => $realModulus, 'publicExponent' => $modulus, 'comment' => $comment); } else { return strlen($key) ? false : array('modulus' => $modulus, 'publicExponent' => $publicExponent, 'comment' => $comment); } // http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue // http://en.wikipedia.org/wiki/XML_Signature // http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue // http://en.wikipedia.org/wiki/XML_Signature case CRYPT_RSA_PRIVATE_FORMAT_XML: case CRYPT_RSA_PUBLIC_FORMAT_XML: $this->components = array(); $xml = xml_parser_create('UTF-8'); xml_set_object($xml, $this); xml_set_element_handler($xml, '_start_element_handler', '_stop_element_handler'); xml_set_character_data_handler($xml, '_data_handler'); // add <xml></xml> to account for "dangling" tags like <BitStrength>...</BitStrength> that are sometimes added if (!xml_parse($xml, '<xml>' . $key . '</xml>')) { return false; } return isset($this->components['modulus']) && isset($this->components['publicExponent']) ? $this->components : false; // from PuTTY's SSHPUBK.C // from PuTTY's SSHPUBK.C case CRYPT_RSA_PRIVATE_FORMAT_PUTTY: $components = array(); $key = preg_split('#\\r\\n|\\r|\\n#', $key); $type = trim(preg_replace('#PuTTY-User-Key-File-2: (.+)#', '$1', $key[0])); if ($type != 'ssh-rsa') { return false; } $encryption = trim(preg_replace('#Encryption: (.+)#', '$1', $key[1])); $comment = trim(preg_replace('#Comment: (.+)#', '$1', $key[2])); $publicLength = trim(preg_replace('#Public-Lines: (\\d+)#', '$1', $key[3])); $public = base64_decode(implode('', array_map('trim', array_slice($key, 4, $publicLength)))); $public = substr($public, 11); extract(unpack('Nlength', $this->_string_shift($public, 4))); $components['publicExponent'] = new BigInteger($this->_string_shift($public, $length), -256); extract(unpack('Nlength', $this->_string_shift($public, 4))); $components['modulus'] = new BigInteger($this->_string_shift($public, $length), -256); $privateLength = trim(preg_replace('#Private-Lines: (\\d+)#', '$1', $key[$publicLength + 4])); $private = base64_decode(implode('', array_map('trim', array_slice($key, $publicLength + 5, $privateLength)))); switch ($encryption) { case 'aes256-cbc': $symkey = ''; $sequence = 0; while (strlen($symkey) < 32) { $temp = pack('Na*', $sequence++, $this->password); $symkey .= pack('H*', sha1($temp)); } $symkey = substr($symkey, 0, 32); $crypto = new AES(); } if ($encryption != 'none') { $crypto->setKey($symkey); $crypto->disablePadding(); $private = $crypto->decrypt($private); if ($private === false) { return false; } } extract(unpack('Nlength', $this->_string_shift($private, 4))); if (strlen($private) < $length) { return false; } $components['privateExponent'] = new BigInteger($this->_string_shift($private, $length), -256); extract(unpack('Nlength', $this->_string_shift($private, 4))); if (strlen($private) < $length) { return false; } $components['primes'] = array(1 => new BigInteger($this->_string_shift($private, $length), -256)); extract(unpack('Nlength', $this->_string_shift($private, 4))); if (strlen($private) < $length) { return false; } $components['primes'][] = new BigInteger($this->_string_shift($private, $length), -256); $temp = $components['primes'][1]->subtract($this->one); $components['exponents'] = array(1 => $components['publicExponent']->modInverse($temp)); $temp = $components['primes'][2]->subtract($this->one); $components['exponents'][] = $components['publicExponent']->modInverse($temp); extract(unpack('Nlength', $this->_string_shift($private, 4))); if (strlen($private) < $length) { return false; } $components['coefficients'] = array(2 => new BigInteger($this->_string_shift($private, $length), -256)); return $components; } }
/** * Sets the internal crypt engine * * @see \phpseclib\Crypt\Base::Crypt_Base() * @see \phpseclib\Crypt\Base::setPreferredEngine() * @param Integer $engine * @access public * @return Integer */ function setPreferredEngine($engine) { if ($this->mode_3cbc) { $this->des[0]->setPreferredEngine($engine); $this->des[1]->setPreferredEngine($engine); $this->des[2]->setPreferredEngine($engine); } return parent::setPreferredEngine($engine); }
/** * Convert a private key to the appropriate format. * * @access private * @see setPrivateKeyFormat() * * @param String $RSAPrivateKey * * @return String */ function _convertPrivateKey($n, $e, $d, $primes, $exponents, $coefficients) { $signed = $this->privateKeyFormat != self::PRIVATE_FORMAT_XML; $num_primes = count($primes); $raw = array('version' => $num_primes == 2 ? chr(0) : chr(1), 'modulus' => $n->toBytes($signed), 'publicExponent' => $e->toBytes($signed), 'privateExponent' => $d->toBytes($signed), 'prime1' => $primes[1]->toBytes($signed), 'prime2' => $primes[2]->toBytes($signed), 'exponent1' => $exponents[1]->toBytes($signed), 'exponent2' => $exponents[2]->toBytes($signed), 'coefficient' => $coefficients[2]->toBytes($signed)); // if the format in question does not support multi-prime rsa and multi-prime rsa was used, // call _convertPublicKey() instead. switch ($this->privateKeyFormat) { case self::PRIVATE_FORMAT_XML: if ($num_primes != 2) { return false; } return "<RSAKeyValue>\r\n" . ' <Modulus>' . base64_encode($raw['modulus']) . "</Modulus>\r\n" . ' <Exponent>' . base64_encode($raw['publicExponent']) . "</Exponent>\r\n" . ' <P>' . base64_encode($raw['prime1']) . "</P>\r\n" . ' <Q>' . base64_encode($raw['prime2']) . "</Q>\r\n" . ' <DP>' . base64_encode($raw['exponent1']) . "</DP>\r\n" . ' <DQ>' . base64_encode($raw['exponent2']) . "</DQ>\r\n" . ' <InverseQ>' . base64_encode($raw['coefficient']) . "</InverseQ>\r\n" . ' <D>' . base64_encode($raw['privateExponent']) . "</D>\r\n" . '</RSAKeyValue>'; break; case self::PRIVATE_FORMAT_PUTTY: if ($num_primes != 2) { return false; } $key = "PuTTY-User-Key-File-2: ssh-rsa\r\nEncryption: "; $encryption = !empty($this->password) || is_string($this->password) ? 'aes256-cbc' : 'none'; $key .= $encryption; $key .= "\r\nComment: " . $this->comment . "\r\n"; $public = pack('Na*Na*Na*', strlen('ssh-rsa'), 'ssh-rsa', strlen($raw['publicExponent']), $raw['publicExponent'], strlen($raw['modulus']), $raw['modulus']); $source = pack('Na*Na*Na*Na*', strlen('ssh-rsa'), 'ssh-rsa', strlen($encryption), $encryption, strlen($this->comment), $this->comment, strlen($public), $public); $public = base64_encode($public); $key .= "Public-Lines: " . (strlen($public) + 63 >> 6) . "\r\n"; $key .= chunk_split($public, 64); $private = pack('Na*Na*Na*Na*', strlen($raw['privateExponent']), $raw['privateExponent'], strlen($raw['prime1']), $raw['prime1'], strlen($raw['prime2']), $raw['prime2'], strlen($raw['coefficient']), $raw['coefficient']); if (empty($this->password) && !is_string($this->password)) { $source .= pack('Na*', strlen($private), $private); $hashkey = 'putty-private-key-file-mac-key'; } else { $private .= Random::string(16 - (strlen($private) & 15)); $source .= pack('Na*', strlen($private), $private); $sequence = 0; $symkey = ''; while (strlen($symkey) < 32) { $temp = pack('Na*', $sequence++, $this->password); $symkey .= pack('H*', sha1($temp)); } $symkey = substr($symkey, 0, 32); $crypto = new AES(); $crypto->setKey($symkey); $crypto->disablePadding(); $private = $crypto->encrypt($private); $hashkey = 'putty-private-key-file-mac-key' . $this->password; } $private = base64_encode($private); $key .= 'Private-Lines: ' . (strlen($private) + 63 >> 6) . "\r\n"; $key .= chunk_split($private, 64); $hash = new Hash('sha1'); $hash->setKey(pack('H*', sha1($hashkey))); $key .= 'Private-MAC: ' . bin2hex($hash->hash($source)) . "\r\n"; return $key; default: // eg. self::PRIVATE_FORMAT_PKCS1 $components = array(); foreach ($raw as $name => $value) { $components[$name] = pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength(strlen($value)), $value); } $RSAPrivateKey = implode('', $components); if ($num_primes > 2) { $OtherPrimeInfos = ''; for ($i = 3; $i <= $num_primes; $i++) { // OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo // // OtherPrimeInfo ::= SEQUENCE { // prime INTEGER, -- ri // exponent INTEGER, -- di // coefficient INTEGER -- ti // } $OtherPrimeInfo = pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength(strlen($primes[$i]->toBytes(true))), $primes[$i]->toBytes(true)); $OtherPrimeInfo .= pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength(strlen($exponents[$i]->toBytes(true))), $exponents[$i]->toBytes(true)); $OtherPrimeInfo .= pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength(strlen($coefficients[$i]->toBytes(true))), $coefficients[$i]->toBytes(true)); $OtherPrimeInfos .= pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($OtherPrimeInfo)), $OtherPrimeInfo); } $RSAPrivateKey .= pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($OtherPrimeInfos)), $OtherPrimeInfos); } $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); if ($this->privateKeyFormat == self::PRIVATE_FORMAT_PKCS8) { $rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA $RSAPrivateKey = pack('Ca*a*Ca*a*', self::ASN1_INTEGER, "", $rsaOID, 4, $this->_encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); if (!empty($this->password) || is_string($this->password)) { $salt = Random::string(8); $iterationCount = 2048; $crypto = new DES(); $crypto->setPassword($this->password, 'pbkdf1', 'md5', $salt, $iterationCount); $RSAPrivateKey = $crypto->encrypt($RSAPrivateKey); $parameters = pack('Ca*a*Ca*N', self::ASN1_OCTETSTRING, $this->_encodeLength(strlen($salt)), $salt, self::ASN1_INTEGER, $this->_encodeLength(4), $iterationCount); $pbeWithMD5AndDES_CBC = "*†H†÷\r"; $encryptionAlgorithm = pack('Ca*a*Ca*a*', self::ASN1_OBJECT, $this->_encodeLength(strlen($pbeWithMD5AndDES_CBC)), $pbeWithMD5AndDES_CBC, self::ASN1_SEQUENCE, $this->_encodeLength(strlen($parameters)), $parameters); $RSAPrivateKey = pack('Ca*a*Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($encryptionAlgorithm)), $encryptionAlgorithm, self::ASN1_OCTETSTRING, $this->_encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = "-----BEGIN ENCRYPTED PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END ENCRYPTED PRIVATE KEY-----'; } else { $RSAPrivateKey = "-----BEGIN PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END PRIVATE KEY-----'; } return $RSAPrivateKey; } if (!empty($this->password) || is_string($this->password)) { $iv = Random::string(8); $symkey = pack('H*', md5($this->password . $iv)); // symkey is short for symmetric key $symkey .= substr(pack('H*', md5($symkey . $this->password . $iv)), 0, 8); $des = new TripleDES(); $des->setKey($symkey); $des->setIV($iv); $iv = strtoupper(bin2hex($iv)); $RSAPrivateKey = "-----BEGIN RSA PRIVATE KEY-----\r\n" . "Proc-Type: 4,ENCRYPTED\r\n" . "DEK-Info: DES-EDE3-CBC,{$iv}\r\n" . "\r\n" . chunk_split(base64_encode($des->encrypt($RSAPrivateKey)), 64) . '-----END RSA PRIVATE KEY-----'; } else { $RSAPrivateKey = "-----BEGIN RSA PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END RSA PRIVATE KEY-----'; } return $RSAPrivateKey; } }
/** * Convert a private key to the appropriate format. * * @access public * @param \phpseclib\Math\BigInteger $n * @param \phpseclib\Math\BigInteger $e * @param \phpseclib\Math\BigInteger $d * @param array $primes * @param array $exponents * @param array $coefficients * @param string $password optional * @return string */ static function savePrivateKey(BigInteger $n, BigInteger $e, BigInteger $d, $primes, $exponents, $coefficients, $password = '') { $num_primes = count($primes); $raw = array('version' => $num_primes == 2 ? chr(0) : chr(1), 'modulus' => $n->toBytes(true), 'publicExponent' => $e->toBytes(true), 'privateExponent' => $d->toBytes(true), 'prime1' => $primes[1]->toBytes(true), 'prime2' => $primes[2]->toBytes(true), 'exponent1' => $exponents[1]->toBytes(true), 'exponent2' => $exponents[2]->toBytes(true), 'coefficient' => $coefficients[2]->toBytes(true)); $components = array(); foreach ($raw as $name => $value) { $components[$name] = pack('Ca*a*', self::ASN1_INTEGER, ASN1::encodeLength(strlen($value)), $value); } $RSAPrivateKey = implode('', $components); if ($num_primes > 2) { $OtherPrimeInfos = ''; for ($i = 3; $i <= $num_primes; $i++) { // OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo // // OtherPrimeInfo ::= SEQUENCE { // prime INTEGER, -- ri // exponent INTEGER, -- di // coefficient INTEGER -- ti // } $OtherPrimeInfo = pack('Ca*a*', self::ASN1_INTEGER, ASN1::encodeLength(strlen($primes[$i]->toBytes(true))), $primes[$i]->toBytes(true)); $OtherPrimeInfo .= pack('Ca*a*', self::ASN1_INTEGER, ASN1::encodeLength(strlen($exponents[$i]->toBytes(true))), $exponents[$i]->toBytes(true)); $OtherPrimeInfo .= pack('Ca*a*', self::ASN1_INTEGER, ASN1::encodeLength(strlen($coefficients[$i]->toBytes(true))), $coefficients[$i]->toBytes(true)); $OtherPrimeInfos .= pack('Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($OtherPrimeInfo)), $OtherPrimeInfo); } $RSAPrivateKey .= pack('Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($OtherPrimeInfos)), $OtherPrimeInfos); } $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $rsaOID = "0\r\t*†H†÷\r"; // hex version of MA0GCSqGSIb3DQEBAQUA $RSAPrivateKey = pack('Ca*a*Ca*a*', self::ASN1_INTEGER, "", $rsaOID, 4, ASN1::encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); if (!empty($password) || is_string($password)) { $salt = Random::string(8); $iterationCount = 2048; $crypto = new DES(DES::MODE_CBC); $crypto->setPassword($password, 'pbkdf1', 'md5', $salt, $iterationCount); $RSAPrivateKey = $crypto->encrypt($RSAPrivateKey); $parameters = pack('Ca*a*Ca*N', self::ASN1_OCTETSTRING, ASN1::encodeLength(strlen($salt)), $salt, self::ASN1_INTEGER, ASN1::encodeLength(4), $iterationCount); $pbeWithMD5AndDES_CBC = "*†H†÷\r"; $encryptionAlgorithm = pack('Ca*a*Ca*a*', self::ASN1_OBJECT, ASN1::encodeLength(strlen($pbeWithMD5AndDES_CBC)), $pbeWithMD5AndDES_CBC, self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($parameters)), $parameters); $RSAPrivateKey = pack('Ca*a*Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($encryptionAlgorithm)), $encryptionAlgorithm, self::ASN1_OCTETSTRING, ASN1::encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, ASN1::encodeLength(strlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = "-----BEGIN ENCRYPTED PRIVATE KEY-----\r\n" . chunk_split(Base64::encode($RSAPrivateKey), 64) . '-----END ENCRYPTED PRIVATE KEY-----'; } else { $RSAPrivateKey = "-----BEGIN PRIVATE KEY-----\r\n" . chunk_split(Base64::encode($RSAPrivateKey), 64) . '-----END PRIVATE KEY-----'; } return $RSAPrivateKey; }