/**
  * Convert if possible a supplied argument to a rational
  *
  * @param int|float|string|NumericTypeInterface $value
  *
  * @return \Chippyash\Math\Matrix\RationalNumber
  *
  * @throws \Chippyash\Matrix\Exceptions\MatrixException
  * @throws \Exception
  */
 protected function convertNumberToRational($value)
 {
     if ($value instanceof NumericTypeInterface) {
         return $value->asRational();
     }
     switch (gettype($value)) {
         case 'integer':
             return RationalTypeFactory::create($value, 1);
         case 'double':
             return RationalTypeFactory::fromFloat($value);
         case 'string':
             try {
                 return RationalTypeFactory::fromString($value);
             } catch (\Exception $e) {
                 try {
                     return ComplexTypeFactory::fromString($value)->asRational();
                 } catch (\Exception $ex) {
                     throw new MatrixException('The string representation of the number is invalid for a rational');
                 }
             }
         case 'NULL':
             return RationalTypeFactory::create(0, 1);
         case 'boolean':
             return RationalTypeFactory::create($value ? 1 : 0, 1);
         default:
             throw new MatrixException('Rational expects int, float, string, Rational or NumericTypeInterface ');
     }
 }
 /**
  * @dataProvider polars
  */
 public function testCreateFromPolarReturnsComplexType($r, $t)
 {
     $radius = RationalTypeFactory::fromString($r);
     $theta = RationalTypeFactory::fromString($t);
     $p = ComplexTypeFactory::fromPolar($radius, $theta);
     $this->assertInstanceOf(self::CTYPE_NAME, $p);
 }
 public function testIntPowReturnsRationalOrIntOrComplexTypes()
 {
     $base = new IntType(5);
     $exp = new IntType(3);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\IntType', $this->object->intPow($base, $exp));
     $this->assertEquals(125, $this->object->intPow($base, $exp)->get());
     $exp2 = new FloatType(3.5);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Rational\\RationalType', $this->object->intPow($base, $exp2));
     $this->assertEquals('332922571/1191100', (string) $this->object->intPow($base, $exp2));
     $exp3 = RationalTypeFactory::fromFloat(3.5);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Rational\\RationalType', $this->object->intPow($base, $exp3));
     $this->assertEquals('332922571/1191100', (string) $this->object->intPow($base, $exp3));
     $base2 = new IntType(4);
     $exp4 = ComplexTypeFactory::fromString('5+3i');
     $pow = $this->object->intPow($base2, $exp4);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Complex\\ComplexType', $pow);
     $this->assertEquals('-778299179/1445876', (string) $pow->r());
     $this->assertEquals('-861158767/988584', (string) $pow->i());
     $exp5 = ComplexTypeFactory::fromString('0+3i');
     $pow = $this->object->intPow($base2, $exp5);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Complex\\ComplexType', $pow);
     $this->assertEquals('-1722722/3277175', (string) $pow->r());
     $this->assertEquals('-20905959/24575389', (string) $pow->i());
     $exp6 = ComplexTypeFactory::fromString('5+0i');
     $pow = $this->object->intPow($base2, $exp6);
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Rational\\RationalType', $pow);
     $this->assertEquals(1024, $pow->get());
 }
Example #4
0
 /**
  * Construct a complete Matrix with all entries set to a complex number
  * Takes a source matrix or array (which can be incomplete and converts each
  * entry to complex number type, setting a default value if entry does not exist.
  *
  * If a Matrix is supplied as $source, the data is cloned into the ComplexMatrix
  * converting to complex number values, with no further checks, although you
  * may get exceptions thrown if conversion is not possible.
  *
  * If you don't supply a default value, then 0+0i will be used
  *
  * @param Matrix|array $source Array to initialise the matrix with
  * @param ComplexType $normalizeDefault Value to set missing vertices
  *
  */
 public function __construct($source, ComplexType $normalizeDefault = null)
 {
     if (is_null($normalizeDefault)) {
         $ri = RationalTypeFactory::create(0, 1);
         $normalizeDefault = ComplexTypeFactory::create($ri, clone $ri);
     }
     parent::__construct($source, $normalizeDefault);
 }
 public function testComputeReturnsCorrectResult()
 {
     $testArray = [[1, 2, 3], [3, 2, 1], [2, 1, 3]];
     $expectedArray = [[RationalTypeFactory::create(3), RationalTypeFactory::create(4), RationalTypeFactory::create(5)], [RationalTypeFactory::create(5), RationalTypeFactory::create(4), RationalTypeFactory::create(3)], [RationalTypeFactory::create(4), RationalTypeFactory::create(3), RationalTypeFactory::create(5)]];
     $object = new RationalMatrix($testArray);
     $computation = new \Chippyash\Math\Matrix\Computation\Add\Scalar();
     $this->assertEquals($expectedArray, $object->compute($computation, 2)->toArray());
 }
function createMatrix($size)
{
    $c = 0;
    $fn = function ($r, $c) use(&$c) {
        return RationalTypeFactory::create($c++, 1);
    };
    $iSize = TypeFactory::createInt($size);
    return MatrixFactory::createFromFunction($fn, $iSize, $iSize, new StringType('rational'));
}
 /**
  * Create a new scalar based on type of original matrix
  *
  * @param \Chippyash\Math\Matrix\NumericMatrix $originalMatrix
  * @param scalar $scalar
  * @return Chippyash\Type\Interfaces\NumericTypeInterface
  *
  */
 protected function createCorrectScalarType(NumericMatrix $originalMatrix, $scalar)
 {
     if ($scalar instanceof NumericTypeInterface) {
         if ($originalMatrix instanceof RationalMatrix) {
             return $scalar->asRational();
         }
         if ($originalMatrix instanceof ComplexMatrix) {
             return $scalar->asComplex();
         }
         return $scalar;
     }
     if ($originalMatrix instanceof ComplexMatrix) {
         if (is_numeric($scalar)) {
             return ComplexTypeFactory::create($scalar, 0);
         }
         if (is_string($scalar)) {
             try {
                 return RationalTypeFactory::create($scalar)->asComplex();
             } catch (\Exception $e) {
                 //do nothing
             }
         }
         if (is_bool($scalar)) {
             return ComplexTypeFactory::create($scalar ? 1 : 0, 0);
         }
         return ComplexTypeFactory::create($scalar);
     }
     if ($originalMatrix instanceof RationalMatrix) {
         if (is_bool($scalar)) {
             $scalar = $scalar ? 1 : 0;
         }
         return RationalTypeFactory::create($scalar);
     }
     //handling for NumericMatrix
     if (is_int($scalar)) {
         return TypeFactory::createInt($scalar);
     } elseif (is_float($scalar)) {
         return TypeFactory::createRational($scalar);
     } elseif (is_bool($scalar)) {
         return TypeFactory::createInt($scalar ? 1 : 0);
     } elseif (is_string($scalar)) {
         try {
             return TypeFactory::createRational($scalar);
         } catch (\InvalidArgumentException $e) {
             try {
                 return ComplexTypeFactory::create($scalar);
             } catch (\InvalidArgumentException $e) {
                 //do nothing
             }
         }
     }
     throw new ComputationException('Scalar parameter is not a supported type for numeric matrices: ' . getType($scalar));
 }
Example #8
0
 private function toStrongType(array $values, $expectedType)
 {
     $ns = '\\Chippyash\\Type\\Number\\';
     $class = $ns . $expectedType;
     $ret = [];
     foreach ($values as $r => $row) {
         foreach ($row as $c => $item) {
             if ($expectedType == 'Rational\\RationalType') {
                 $ret[$r][$c] = RationalTypeFactory::fromFloat($item);
             } else {
                 $ret[$r][$c] = new $class($item);
             }
         }
     }
     return $ret;
 }
Example #9
0
 /**
  * @dataProvider luData
  *
  */
 public function testDecomposeReturnsCorrectResult($source, $LUD, $LD, $UD, $pivotVectorD, $permutationMatrixD, $det)
 {
     $mA = new RationalMatrix($source);
     $LU = new RationalMatrix($LUD);
     $L = new RationalMatrix($LD);
     $U = new RationalMatrix($UD);
     $pivotVector = new RationalMatrix($pivotVectorD);
     $permutationMatrix = new RationalMatrix($permutationMatrixD);
     $decomp = $this->object->decompose($mA);
     //        var_dump($decomp->Det);return;
     $this->assertEquals($LU, $this->object->LU, 'LU matrix incorrect');
     $this->assertEquals($L, $this->object->L, 'L matrix incorrect');
     $this->assertEquals($U, $this->object->U, 'U matrix incorrect');
     $this->assertEquals($pivotVector, $this->object->PivotVector, 'PivotVector matrix incorrect');
     $this->assertEquals($permutationMatrix, $this->object->PermutationMatrix, 'Permutation matrix incorrect');
     $det = is_null($det) ? null : RTF::create($det);
     $this->assertEquals($det, $this->object->Det, 'Determinant incorrect');
 }
Example #10
0
 /**
  * Construct a complete Matrix with all entries set to Chippyash/Type
  * Takes a source matrix or array (which can be incomplete and converts each
  * entry to Chippyash/Type), setting a default value if entry does not exist.
  *
  * If a NumericMatrix is supplied as $source, the data is cloned into the Matrix
  * with no further checks.
  *
  * @param NumericMatrix|array $source Array to initialise the matrix with
  * @param mixed $normalizeDefault Value to set missing vertices
  * @throws \Chippyash\Math\Matrix\Exceptions\MathMatrixException
  */
 public function __construct($source, $normalizeDefault = 0)
 {
     if ($source instanceof self) {
         $this->store($source->toArray());
         return;
     }
     if (is_array($source)) {
         if (is_int($normalizeDefault)) {
             $default = TypeFactory::createInt($normalizeDefault);
         } elseif (is_float($normalizeDefault)) {
             $default = RationalTypeFactory::fromFloat($normalizeDefault);
         } elseif (!$normalizeDefault instanceof NumericTypeInterface) {
             throw new MathMatrixException('NumericMatrix expects numeric default value');
         } else {
             $default = $normalizeDefault;
         }
         parent::__construct($source, false, true, $default);
     } else {
         throw new MathMatrixException('NumericMatrix expects NumericMatrix or array as source data');
     }
 }
Example #11
0
 /**
  * Construct a square NumericMatrix whose entries on the diagonal ==  1, 1/1 or 1+0i
  * All other entries == 0, 0/1 or 0+0i
  *
  * @param IntType $size Number of required rows and columns
  * @param IntType $identityType Type of identity entries: default == IDM_TYPE_INT
  *
  * @throws \InvalidArgumentException
  */
 public function __construct(IntType $size, IntType $identityType = null)
 {
     if (is_null($identityType)) {
         $idt = self::IDM_TYPE_INT;
     } else {
         $idt = $identityType();
     }
     if (!in_array($idt, $this->availableTypes)) {
         throw new \InvalidArgumentException('Identity type invalid');
     }
     if ($size() < 1) {
         throw new \InvalidArgumentException('size must be >= 1');
     }
     $f = function ($row, $col) use($idt) {
         if ($idt == self::IDM_TYPE_RATIONAL) {
             return RationalTypeFactory::create($row == $col ? 1 : 0, 1);
         } elseif ($idt == self::IDM_TYPE_COMPLEX) {
             return ComplexTypeFactory::create(RationalTypeFactory::create($row == $col ? 1 : 0, 1), RationalTypeFactory::create(0, 1));
         } else {
             return TypeFactory::createInt($row == $col ? 1 : 0);
         }
     };
     parent::__construct($f, $size, $size);
 }
 public function nonComplexNumbers()
 {
     return [[RationalTypeFactory::create(2, 5)]];
 }
Example #13
0
 protected function toRational(array $dA)
 {
     foreach ($dA as &$row) {
         foreach ($row as &$entry) {
             if ($entry instanceof NumericTypeInterface) {
                 $entry = $entry->asRational();
             } elseif (is_numeric($entry)) {
                 $entry = RationalTypeFactory::fromFloat(floatval($entry));
             } else {
                 $entry = $entry;
             }
         }
     }
     return new Matrix($dA);
 }
Example #14
0
 public function computeMatrices()
 {
     //set required type as data is generated before tests
     RequiredType::getInstance()->set(RequiredType::TYPE_NATIVE);
     return [[[[1, 2, 3], [3, 2, 1], [2, 1, 3]], [[TypeFactory::createInt(2), TypeFactory::createInt(4), TypeFactory::createInt(6)], [TypeFactory::createInt(6), TypeFactory::createInt(4), TypeFactory::createInt(2)], [TypeFactory::createInt(4), TypeFactory::createInt(2), TypeFactory::createInt(6)]], 2], [[[1, 2, 3]], [[RationalTypeFactory::create(2.5), RationalTypeFactory::create(5.0), RationalTypeFactory::create(7.5)]], 2.5], [[[1.5, 2.5, 3.5]], [[RationalTypeFactory::create(3.0), RationalTypeFactory::create(5.0), RationalTypeFactory::create(7.0)]], 2], [[[1.12, 2.12, 3.12]], [[RationalTypeFactory::create(1.12), RationalTypeFactory::create(2.12), RationalTypeFactory::create(3.12)]], 1.0], [[[1, 2, 3]], [[TypeFactory::createInt(1), TypeFactory::createInt(2), TypeFactory::createInt(3)]], true], [[[1, 2, 3]], [[TypeFactory::createInt(0), TypeFactory::createInt(0), TypeFactory::createInt(0)]], false], [[[true, false]], [[TypeFactory::createInt(1), TypeFactory::createInt(0)]], true], [[[true, false]], [[TypeFactory::createInt(0), TypeFactory::createInt(0)]], false]];
 }
 /**
  * @runInSeparateProcess
  */
 public function testSetDefaultFromFloatToleranceIsStatic()
 {
     RationalTypeFactory::setDefaultFromFloatTolerance(1.0E-5);
     $this->assertEquals('113/355', (string) RationalTypeFactory::fromFloat(M_1_PI));
     RationalTypeFactory::setDefaultFromFloatTolerance(1.0E-15);
     $this->assertEquals('25510582/80143857', (string) RationalTypeFactory::fromFloat(M_1_PI));
 }
Example #16
0
 public function mixedMatrices()
 {
     return [[[[1, 2, 3]], TypeFactory::createInt(6)], [[[1], [2], [3]], TypeFactory::createInt(6)], [[[1, 2, 3], [1, 2, 3]], TypeFactory::createInt(12)], [[[1.1, 2, 3], [1, 2.2, 3]], RationalTypeFactory::fromFloat(12.3)], [[[0.5, 0.5]], RationalTypeFactory::create(1)]];
 }
 public function testCreateRationalMatrixWithRationalTypeEntriesReturnsRationalMatrix()
 {
     $data = [[RF::create(1, -3), RF::create(-4, 6), RF::create(12, 3)]];
     $this->assertInstanceOf('Chippyash\\Math\\Matrix\\RationalMatrix', MatrixFactory::createRational($data));
 }
Example #18
0
 public function testMagicInvokeReturnsFloatForRealFloatComplexNumber()
 {
     $c = new ComplexType(RationalTypeFactory::fromFloat(2.5), $this->createRationalType(0));
     $this->assertInternalType('float', $c());
     $this->assertEquals(2.5, $c());
 }
 public function testSqrtRationalTypeReturnsRationalType()
 {
     $res = $this->object->sqrt(RationalTypeFactory::create(7));
     $this->assertInstanceOf('\\Chippyash\\Type\\Number\\Rational\\RationalType', $res);
     $this->assertEquals('46256493/17483311', (string) $res);
 }
 /**
  * Perform Guass Jordan Elimination on the two supplied matrices
  *
  * @param NumericMatrix $mA First matrix to act on - required
  * @param NumericMatrix $extra Second matrix to act upon - required
  *
  * @return \Chippyash\Math\Matrix\DecompositionAbstractDecomposition Fluent Interface
  *
  * @throws \Chippyash\Math\Matrix\Exceptions\SingularMatrixException
  */
 public function decompose(NumericMatrix $mA, $extra = null)
 {
     $this->assertParameterIsMatrix($extra, 'Parameter extra is not a matrix')->assertMatrixIsNumeric($extra, 'Parameter extra is not a numeric matrix')->assertMatrixIsSquare($mA, 'Parameter mA is not a square matrix')->assertMatrixRowsAreEqual($mA, $extra, 'mA->rows != extra->rows');
     $rows = $mA->rows();
     $dA = $mA->toArray();
     $dB = $extra->toArray();
     $zero = function () {
         return RationalTypeFactory::create(0, 1);
     };
     $one = function () {
         return RationalTypeFactory::create(1, 1);
     };
     $calc = new Calculator();
     $comp = new Comparator();
     $ipiv = array_fill(0, $rows, $zero());
     $indxr = array_fill(0, $rows, 0);
     $indxc = array_fill(0, $rows, 0);
     // find the pivot element by searching the entire matrix for its largest value, but excluding columns already reduced.
     $irow = $icol = 0;
     for ($i = 0; $i < $rows; $i++) {
         $big = $zero();
         for ($j = 0; $j < $rows; $j++) {
             if ($comp->neq($ipiv[$j], $one())) {
                 for ($k = 0; $k < $rows; $k++) {
                     if ($comp->eq($ipiv[$k], $zero())) {
                         $absVal = $dA[$j][$k]->abs();
                         if ($comp->gt($absVal, $big)) {
                             unset($big);
                             $big = clone $absVal;
                             $irow = $j;
                             $icol = $k;
                         }
                     } elseif ($comp->gt($ipiv[$k], $one())) {
                         throw new SingularMatrixException('GaussJordanElimination');
                     }
                 }
             }
         }
         //Now interchange row to move the pivot element to a diagonal
         $ipiv[$icol] = $calc->add($ipiv[$icol], $one());
         if ($irow != $icol) {
             $this->swapRows($dA, $irow, $icol);
             $this->swapRows($dB, $irow, $icol);
         }
         // Remember permutations to later
         $indxr[$i] = $irow;
         $indxc[$i] = $icol;
         if ($comp->eq($dA[$icol][$icol], $zero())) {
             throw new SingularMatrixException('GaussJordanElimination');
         }
         // Now divide the found row to make the pivot element 1
         // To maintain arithmetic integrity we use the reciprocal to multiply by
         $pivinv = $calc->reciprocal($dA[$icol][$icol]);
         $this->multRow($dA, $icol, $pivinv, $calc);
         $this->multRow($dB, $icol, $pivinv, $calc);
         // And reduce all other rows but the pivoted row with the value of the pivot row
         for ($ll = 0; $ll < $rows; $ll++) {
             if ($ll != $icol) {
                 $multiplier = clone $dA[$ll][$icol];
                 $multiplier->negate();
                 $this->addMultipleOfOtherRowToRow($dA, $multiplier, $icol, $ll, $calc);
                 $this->addMultipleOfOtherRowToRow($dB, $multiplier, $icol, $ll, $calc);
             }
         }
     }
     $this->set('left', $this->createCorrectMatrixType($mA, $dA));
     $this->set('right', $this->createCorrectMatrixType($extra, $dB));
     return clone $this;
 }
Example #21
0
 /**
  * Create complex power from natural base and complex exponent
  *
  * @param int|float $base base
  * @param ComplexType $exp exponent
  *
  * @return NI|ComplexType
  */
 private function complexExponent($base, ComplexType $exp)
 {
     if ($exp->isReal()) {
         return $this->rationalPow(RationalTypeFactory::fromFloat($base), $exp->r());
     }
     //do the imaginary part
     //n^bi = cos(b.lg(n)) + i.sin(b.lg(n))
     $b = $exp->i()->get();
     $n = log($base);
     $r = cos($b * $n);
     $i = sin($b * $n);
     //no real part
     if ($exp->r()->get() == 0) {
         return new ComplexType(RationalTypeFactory::fromFloat($r), RationalTypeFactory::fromFloat($i));
     }
     //real and imaginary part
     //n^a+bi = n^a(cos(b.lg(n)) + i.sin(b.lg(n)))
     $na = pow($base, $exp->r()->get());
     $rr = $na * $r;
     $ii = $na * $i;
     return new ComplexType(RationalTypeFactory::fromFloat($rr), RationalTypeFactory::fromFloat($ii));
 }
Example #22
0
 public function testSingleMatrixReturnsValueOfItsSingleEntry()
 {
     $this->assertEquals(2, $this->object->determinant(new NumericMatrix([2]))->get());
     $this->assertEquals('2/5', (string) $this->object->determinant(new RationalMatrix([RationalTypeFactory::fromString('2/5')])));
     $this->assertEquals('1+3i', $this->object->determinant(new ComplexMatrix([ComplexTypeFactory::fromString('1+3i')]))->get());
 }
 public function nonComplexNumbers()
 {
     return [[2], [-2.4], [new FloatType(2)], [new FloatType(2.6)], [RationalTypeFactory::create(1, 5)], [new WholeIntType(3)], [new NaturalIntType(6)]];
 }
Example #24
0
 /**
  * Return number as Rational number.
  * NB, numerator and denominator will be caste as IntTypes
  *
  * @return \Chippyash\Type\Number\Rational\RationalType
  */
 public function asRational()
 {
     return RationalTypeFactory::fromFloat($this->value);
 }
 /**
  * Convert to RationalType
  *
  * @param mixed $original
  *
  * @return \Chippyash\Type\Number\Rational\RationalType|\Chippyash\Type\Number\Rational\GMPRationalType
  *
  * @throws InvalidTypeException
  */
 protected static function convertType($original)
 {
     if ($original instanceof AbstractRationalType) {
         return RationalTypeFactory::create($original->numerator()->get(), $original->denominator()->get());
     }
     if (is_numeric($original)) {
         if (is_int($original)) {
             return RationalTypeFactory::create($original, 1);
         }
         //default - convert to float
         return RationalTypeFactory::fromFloat(floatval($original));
     }
     if ($original instanceof FloatType) {
         return RationalTypeFactory::fromFloat($original());
     }
     if ($original instanceof IntType) {
         return RationalTypeFactory::create($original, 1);
     }
     if (is_string($original)) {
         try {
             return RationalTypeFactory::fromString($original);
         } catch (\InvalidArgumentException $e) {
             throw new InvalidTypeException("{$original} for Complex type construction");
         }
     }
     $type = gettype($original);
     throw new InvalidTypeException("{$type} for Complex type construction");
 }
 public function correctResults()
 {
     //set required type as data created before tests are run
     RequiredType::getInstance()->set(RequiredType::TYPE_NATIVE);
     return [[1, 2, new IntType(3)], [new IntType(1), 2, new IntType(3)], [1, new IntType(2), new IntType(3)], [new IntType(1), new IntType(2), new IntType(3)], [2.0, 3.0, new FloatType(5.0)], [new FloatType(2.0), 3.0, new FloatType(5.0)], [2.0, new FloatType(3.0), new FloatType(5.0)], [new FloatType(2.0), new FloatType(3.0), new FloatType(5.0)], [new IntType(2), 3.0, new FloatType(5.0)], [new WholeIntType(2), 3, new WholeIntType(5)], [2, new WholeIntType(3), new WholeIntType(5)], [new NaturalIntType(2), 3, new NaturalIntType(5)], [2, new NaturalIntType(3), new NaturalIntType(5)], [RationalTypeFactory::create(4), RationalTypeFactory::create(4), RationalTypeFactory::create(8)]];
 }
Example #27
0
 /**
  * Create and return a rational number matrix
  * $data elements are either:
  *  - a RationalType
  *  - string representations of rational number
  *  - a PHP float
  *  - a 2 item array representing numerator & denominator e.g. [2,-4] = '-2/4'
  *
  * @param array $data
  *
  * @return \Chippyash\Math\Matrix\RationalMatrix
  *
  * @throws \Chippyash\Math\Matrix\Exceptions\MathMatrixException
  */
 public static function createRational(array $data)
 {
     foreach ($data as &$row) {
         foreach ($row as &$item) {
             if (!$item instanceof RationalType) {
                 if (is_array($item) && count($item) == 2) {
                     $item = RationalTypeFactory::create($item[0], $item[1]);
                 } elseif (is_string($item)) {
                     try {
                         $item = RationalTypeFactory::fromString($item);
                     } catch (\InvalidArgumentException $e) {
                         throw new MathMatrixException('Invalid item type for Rational Matrix');
                     }
                 } elseif (is_float($item)) {
                     $item = RationalTypeFactory::fromFloat($item);
                 } else {
                     throw new MathMatrixException('Invalid item type for Rational Matrix');
                 }
             }
         }
     }
     return new RationalMatrix($data);
 }
 public function testReciprocalOfRationalTypeReturnsRationalType()
 {
     $this->assertInstanceOf('Chippyash\\Type\\Number\\Rational\\RationalType', $this->object->reciprocal(RationalTypeFactory::create(2, 1)));
 }
Example #29
0
use Chippyash\Type\TypeFactory;
use Chippyash\Type\RequiredType;
use Chippyash\Type\Number\Rational\RationalTypeFactory;
/**
 * Tuning
 * set tolerance for creating rationals from floats - sqrt() function will use it.
 *
 * Try setting this to the PHP int limit i.e. 1e-17.  You will find that some
 * of the square roots cannot be computed because the limits of the mechanism
 * to convert floats to rational numbers busts the available precision and therefore
 * we get into an overflow situation.
 *
 * Setting tolerance to a lower number, say 1e-6, will compute faster but at the
 * expense of accuracy
 */
RationalTypeFactory::setDefaultFromFloatTolerance(1.0E-15);
/**
 * Set the required number type.  System will automatically use GMP if
 * it is available.  You can force it to use native PHP thus:
 */
RequiredType::getInstance()->set(RequiredType::TYPE_NATIVE);
//now create 10000 numbers for the test
//try playing with this figure to see the results
$numbers = [];
for ($x = 1; $x < 10001; $x++) {
    $numbers[$x] = TypeFactory::create('int', $x);
}
//create primes
$primes = [];
$start = microtime(true);
foreach ($numbers as $key => $number) {
Example #30
0
 /**
  * Return the angle (sometimes known as the argument) of the number
  * when expressed in polar notation
  *
  * The return value is a rational expressing theta as radians
  *
  * @return \Chippyash\Type\Number\Rational\RationalType
  */
 public function theta()
 {
     return RationalTypeFactory::fromFloat(atan2($this->value['imaginary']->asFloatType()->get(), $this->value['real']->asFloatType()->get()));
 }