function recoverPubKey($r, $s, $e, $recoveryFlags, $G) { $isYEven = ($recoveryFlags & 1) != 0; $isSecondKey = ($recoveryFlags & 2) != 0; $curve = $G->getCurve(); $signature = new Signature($r, $s); // Precalculate (p + 1) / 4 where p is the field order static $p_over_four; // XXX just assuming only one curve/prime will be used if (!$p_over_four) { $p_over_four = gmp_div(gmp_add($curve->getPrime(), 1), 4); } // 1.1 Compute x if (!$isSecondKey) { $x = $r; } else { $x = gmp_add($r, $G->getOrder()); } // 1.3 Convert x to point $alpha = gmp_mod(gmp_add(gmp_add(gmp_pow($x, 3), gmp_mul($curve->getA(), $x)), $curve->getB()), $curve->getPrime()); $beta = NumberTheory::modular_exp($alpha, $p_over_four, $curve->getPrime()); // If beta is even, but y isn't or vice versa, then convert it, // otherwise we're done and y == beta. if (isBignumEven($beta) == $isYEven) { $y = gmp_sub($curve->getPrime(), $beta); } else { $y = $beta; } // 1.4 Check that nR is at infinity (implicitly done in construtor) $R = new Point($curve, $x, $y, $G->getOrder()); $point_negate = function ($p) { return new Point($p->curve, $p->x, gmp_neg($p->y), $p->order); }; // 1.6.1 Compute a candidate public key Q = r^-1 (sR - eG) $rInv = NumberTheory::inverse_mod($r, $G->getOrder()); $eGNeg = $point_negate(Point::mul($e, $G)); $Q = Point::mul($rInv, Point::add(Point::mul($s, $R), $eGNeg)); // 1.6.2 Test Q as a public key $Qk = new PublicKey($G, $Q); if ($Qk->verifies($e, $signature)) { return $Qk; } return false; }
public function sign($hash, $random_k) { if (extension_loaded('gmp') && USE_EXT == 'GMP') { $G = $this->public_key->getGenerator(); $n = $G->getOrder(); $k = gmp_Utils::gmp_mod2($random_k, $n); $p1 = Point::mul($k, $G); $r = $p1->getX(); if (gmp_cmp($r, 0) == 0) { throw new ErrorException("error: random number R = 0 <br />"); } $s = gmp_Utils::gmp_mod2(gmp_mul(NumberTheory::inverse_mod($k, $n), gmp_Utils::gmp_mod2(gmp_add($hash, gmp_mul($this->secret_multiplier, $r)), $n)), $n); if (gmp_cmp($s, 0) == 0) { throw new ErrorExcpetion("error: random number S = 0<br />"); } return new Signature($r, $s); } else { if (extension_loaded('bcmath') && USE_EXT == 'BCMATH') { $G = $this->public_key->getGenerator(); $n = $G->getOrder(); $k = bcmod($random_k, $n); $p1 = Point::mul($k, $G); $r = $p1->getX(); if (bccomp($r, 0) == 0) { throw new ErrorException("error: random number R = 0 <br />"); } $s = bcmod(bcmul(NumberTheory::inverse_mod($k, $n), bcmod(bcadd($hash, bcmul($this->secret_multiplier, $r)), $n)), $n); if (bccomp($s, 0) == 0) { throw new ErrorExcpetion("error: random number S = 0<br />"); } return new Signature($r, $s); } else { throw new ErrorException("Please install BCMATH or GMP"); } } }
public function verifies($hash, Signature $signature) { if (extension_loaded('gmp') && USE_EXT == 'GMP') { $G = $this->generator; $n = $this->generator->getOrder(); $point = $this->point; $r = $signature->getR(); $s = $signature->getS(); if (gmp_cmp($r, 1) < 0 || gmp_cmp($r, gmp_sub($n, 1)) > 0) { return false; } if (gmp_cmp($s, 1) < 0 || gmp_cmp($s, gmp_sub($n, 1)) > 0) { return false; } $c = NumberTheory::inverse_mod($s, $n); $u1 = gmp_Utils::gmp_mod2(gmp_mul($hash, $c), $n); $u2 = gmp_Utils::gmp_mod2(gmp_mul($r, $c), $n); $xy = Point::add(Point::mul($u1, $G), Point::mul($u2, $point)); $v = gmp_Utils::gmp_mod2($xy->getX(), $n); if (gmp_cmp($v, $r) == 0) { return true; } else { return false; } } else { if (extension_loaded('bcmath') && USE_EXT == 'BCMATH') { $G = $this->generator; $n = $this->generator->getOrder(); $point = $this->point; $r = $signature->getR(); $s = $signature->getS(); if (bccomp($r, 1) == -1 || bccomp($r, bcsub($n, 1)) == 1) { return false; } if (bccomp($s, 1) == -1 || bccomp($s, bcsub($n, 1)) == 1) { return false; } $c = NumberTheory::inverse_mod($s, $n); $u1 = bcmod(bcmul($hash, $c), $n); $u2 = bcmod(bcmul($r, $c), $n); $xy = Point::add(Point::mul($u1, $G), Point::mul($u2, $point)); $v = bcmod($xy->getX(), $n); if (bccomp($v, $r) == 0) { return true; } else { return false; } } else { throw new ErrorException("Please install BCMATH or GMP"); } } }
public static function bcmath_multInverseModP($verbose = false) { $start_time = microtime(true); $n_tests = 0; for ($i = 0; $i < 100; $i++) { $m = rand(20, 10000); for ($j = 0; $j < 100; $j++) { $a = rand(1, $m - 1); if (NumberTheory::gcd2($a, $m) == 1) { $n_tests++; $inv = NumberTheory::inverse_mod($a, $m); if ($inv <= 0 || $inv >= $m || $a * $inv % $m != 1) { $error_tally++; print "{$inv} = inverse_mod( {$a}, {$m} ) is wrong.<br />\n"; flush(); } else { if ($verbose) { print "{$inv} = inverse_mod( {$a}, {$m} ) is CORRECT.<br />\n"; } flush(); } } } } $end_time = microtime(true); $time_res = $end_time - $start_time; echo "<br />Multiplicative inverse mod arbitrary primes took: " . $time_res . " seconds. <br />"; flush(); }
public static function double(Point $p1) { if (extension_loaded('gmp') && USE_EXT == 'GMP') { $p = $p1->curve->getPrime(); $a = $p1->curve->getA(); $inverse = NumberTheory::inverse_mod(gmp_strval(gmp_mul(2, $p1->y)), $p); $three_x2 = gmp_mul(3, gmp_pow($p1->x, 2)); $l = gmp_strval(gmp_Utils::gmp_mod2(gmp_mul(gmp_add($three_x2, $a), $inverse), $p)); $x3 = gmp_strval(gmp_Utils::gmp_mod2(gmp_sub(gmp_pow($l, 2), gmp_mul(2, $p1->x)), $p)); $y3 = gmp_strval(gmp_Utils::gmp_mod2(gmp_sub(gmp_mul($l, gmp_sub($p1->x, $x3)), $p1->y), $p)); if (gmp_cmp(0, $y3) > 0) { $y3 = gmp_strval(gmp_add($p, $y3)); } $p3 = new Point($p1->curve, $x3, $y3); return $p3; } elseif (extension_loaded('bcmath') && USE_EXT == 'BCMATH') { $p = $p1->curve->getPrime(); $a = $p1->curve->getA(); $inverse = NumberTheory::inverse_mod(bcmul(2, $p1->y), $p); $three_x2 = bcmul(3, bcpow($p1->x, 2)); $l = bcmod(bcmul(bcadd($three_x2, $a), $inverse), $p); $x3 = bcmod(bcsub(bcpow($l, 2), bcmul(2, $p1->x)), $p); $y3 = bcmod(bcsub(bcmul($l, bcsub($p1->x, $x3)), $p1->y), $p); if (bccomp(0, $y3) == 1) { $y3 = bcadd($p, $y3); } $p3 = new Point($p1->curve, $x3, $y3); return $p3; } else { throw new ErrorException("Please install BCMATH or GMP"); } }
/** * Decompress Public Key * * Accepts a y_byte, 02 or 03 indicating whether the Y coordinate is * odd or even, and $passpoint, which is simply a hexadecimal X coordinate. * Using this data, it is possible to deconstruct the original * uncompressed public key. * * @param $key * @return array|bool */ public static function decompress_public_key($key) { $y_byte = substr($key, 0, 2); $x_coordinate = substr($key, 2); $x = gmp_strval(gmp_init($x_coordinate, 16), 10); $curve = \SECcurve::curve_secp256k1(); $generator = \SECcurve::generator_secp256k1(); try { $x3 = \NumberTheory::modular_exp($x, 3, $curve->getPrime()); $y2 = gmp_add($x3, $curve->getB()); $y0 = \NumberTheory::square_root_mod_prime(gmp_strval($y2, 10), $curve->getPrime()); if ($y0 == FALSE) { return FALSE; } $y1 = gmp_strval(gmp_sub($curve->getPrime(), $y0), 10); $y_coordinate = $y_byte == '02' ? \gmp_Utils::gmp_mod2(gmp_init($y0, 10), 2) == '0' ? $y0 : $y1 : (\gmp_Utils::gmp_mod2(gmp_init($y0, 10), 2) !== '0' ? $y0 : $y1); $y_coordinate = str_pad(gmp_strval($y_coordinate, 16), 64, '0', STR_PAD_LEFT); $point = new \Point($curve, gmp_strval(gmp_init($x_coordinate, 16), 10), gmp_strval(gmp_init($y_coordinate, 16), 10), $generator->getOrder()); } catch (\Exception $e) { return FALSE; } return array('x' => $x_coordinate, 'y' => $y_coordinate, 'point' => $point, 'public_key' => '04' . $x_coordinate . $y_coordinate); }
public function decompress_public_key($key) { // Initialize $y_byte = substr($key, 0, 2); $x_coordinate = substr($key, 2); // Set variables $x = gmp_strval(gmp_init($x_coordinate, 16), 10); $curve = SECcurve::curve_secp256k1(); $generator = SECcurve::generator_secp256k1(); // Decode try { $x3 = NumberTheory::modular_exp($x, 3, $curve->getPrime()); $y2 = gmp_add($x3, $curve->getB()); $y0 = NumberTheory::square_root_mod_prime(gmp_strval($y2, 10), $curve->getPrime()); if ($y0 === false) { return false; } $y1 = gmp_strval(gmp_sub($curve->getPrime(), $y0), 10); $y_coordinate = $y_byte == '02' ? gmp_Utils::gmp_mod2(gmp_init($y0, 10), 2) == '0' ? $y0 : $y1 : (gmp_Utils::gmp_mod2(gmp_init($y0, 10), 2) !== '0' ? $y0 : $y1); $y_coordinate = str_pad(gmp_strval($y_coordinate, 16), 64, '0', STR_PAD_LEFT); $point = new Point($curve, gmp_strval(gmp_init($x_coordinate, 16), 10), gmp_strval(gmp_init($y_coordinate, 16), 10), $generator->getOrder()); } catch (Exception $e) { return false; } // Return return array('x' => $x_coordinate, 'y' => $y_coordinate, 'point' => $point, 'public_key' => '04' . $x_coordinate . $y_coordinate); }
public static function is_prime($n) { if (extension_loaded('gmp') && USE_EXT == 'GMP') { return gmp_prob_prime($n); } else { if (extension_loaded('bcmath') && USE_EXT == 'BCMATH') { self::$miller_rabin_test_count = 0; $t = 40; $k = 0; $m = bcsub($n, 1); while (bcmod($m, 2) == 0) { $k = bcadd($k, 1); $m = bcdiv($m, 2); } for ($i = 0; $i < $t; $i++) { $a = bcmath_Utils::bcrand(1, bcsub($n, 1)); $b0 = self::modular_exp($a, $m, $n); if ($b0 != 1 && $b0 != bcsub($n, 1)) { $j = 1; while ($j <= $k - 1 && $b0 != bcsub($n, 1)) { $b0 = self::modular_exp($b0, 2, $n); if ($b0 == 1) { self::$miller_rabin_test_count = $i + 1; return false; } $j++; } if ($b0 != bcsub($n, 1)) { self::$miller_rabin_test_count = $i + 1; return false; } } } return true; } else { throw new ErrorException("Please install BCMATH or GMP"); } } }