Example #1
0
<?php

function sigmoid($x)
{
    $steepness = 0.00069315;
    return 1 / (1 + exp(-$x * $steepness));
}
for ($i = 0; $i <= 10000; ++$i) {
    echo $i, ': ', sigmoid($i), '<br>';
}
function feedForward($input)
{
    global $numLayers;
    global $layerSize;
    global $alpha;
    global $beta;
    global $weight;
    global $prevWeight;
    global $out;
    //Assign input to 0th layer
    foreach ($input as $key => $value) {
        $out[0][$key] = $value;
    }
    //Assign output for each neuron using sigmoid function
    for ($i = 1; $i < $numLayers; $i++) {
        for ($j = 0; $j < $layerSize[$i]; $j++) {
            $sum = 0;
            if ($i == 1) {
                $k = 0;
                foreach ($out[0] as $key => $value) {
                    $sum += $value * $weight[$i][$j][$k++];
                }
            } else {
                for ($k = 0; $k < $layerSize[$i - 1]; $k++) {
                    $sum += $out[$i - 1][$k] * $weight[$i][$j][$k];
                }
            }
            //Apply bias
            $sum += $weight[$i][$j][$layerSize[$i - 1]];
            //Finally
            $out[$i][$j] = sigmoid($sum);
        }
    }
}