/**
  * Return the smallest rectangle containing the intersection of this rectangle
  * and the given rectangle. Note that the region of intersection may consist
  * of two disjoint rectangles, in which case a single rectangle spanning both
  * of them is returned.
  *#/
  * public S2LatLngRect intersection(S2LatLngRect other) {
  * R1Interval intersectLat = lat.intersection(other.lat);
  * S1Interval intersectLng = lng.intersection(other.lng);
  * if (intersectLat.isEmpty() || intersectLng.isEmpty()) {
  * // The lat/lng ranges must either be both empty or both non-empty.
  * return empty();
  * }
  * return new S2LatLngRect(intersectLat, intersectLng);
  * }
  *
  * /**
  * Return a rectangle that contains the convolution of this rectangle with a
  * cap of the given angle. This expands the rectangle by a fixed distance (as
  * opposed to growing the rectangle in latitude-longitude space). The returned
  * rectangle includes all points whose minimum distance to the original
  * rectangle is at most the given angle.
  *#/
  * public S2LatLngRect convolveWithCap(S1Angle angle) {
  * // The most straightforward approach is to build a cap centered on each
  * // vertex and take the union of all the bounding rectangles (including the
  * // original rectangle; this is necessary for very large rectangles).
  *
  * // Optimization: convert the angle to a height exactly once.
  * S2Cap cap = S2Cap.fromAxisAngle(new S2Point(1, 0, 0), angle);
  *
  * S2LatLngRect r = this;
  * for (int k = 0; k < 4; ++k) {
  * S2Cap vertexCap = S2Cap.fromAxisHeight(getVertex(k).toPoint(), cap
  * .height());
  * r = r.union(vertexCap.getRectBound());
  * }
  * return r;
  * }
  *
  * /** Return the surface area of this rectangle on the unit sphere. *#/
  * public double area() {
  * if (isEmpty()) {
  * return 0;
  * }
  *
  * // This is the size difference of the two spherical caps, multiplied by
  * // the longitude ratio.
  * return lng().getLength() * Math.abs(Math.sin(latHi().radians()) - Math.sin(latLo().radians()));
  * }
  *
  * /** Return true if two rectangles contains the same set of points. *#/
  * @Override
  * public boolean equals(Object that) {
  * if (!(that instanceof S2LatLngRect)) {
  * return false;
  * }
  * S2LatLngRect otherRect = (S2LatLngRect) that;
  * return lat().equals(otherRect.lat()) && lng().equals(otherRect.lng());
  * }
  *
  * /**
  * Return true if the latitude and longitude intervals of the two rectangles
  * are the same up to the given tolerance (see r1interval.h and s1interval.h
  * for details).
  *#/
  * public boolean approxEquals(S2LatLngRect other, double maxError) {
  * return (lat.approxEquals(other.lat, maxError) && lng.approxEquals(
  * other.lng, maxError));
  * }
  *
  * public boolean approxEquals(S2LatLngRect other) {
  * return approxEquals(other, 1e-15);
  * }
  *
  * @Override
  * public int hashCode() {
  * int value = 17;
  * value = 37 * value + lat.hashCode();
  * return (37 * value + lng.hashCode());
  * }
  *
  * // //////////////////////////////////////////////////////////////////////
  * // S2Region interface (see {@code S2Region} for details):
  *
  * @Override
  * public S2Region clone() {
  * return new S2LatLngRect(this.lo(), this.hi());
  * }
  */
 public function getCapBound()
 {
     // We consider two possible bounding caps, one whose axis passes
     // through the center of the lat-long rectangle and one whose axis
     // is the north or south pole. We return the smaller of the two caps.
     if ($this->isEmpty()) {
         echo __METHOD__ . " empty\n";
         return S2Cap::sempty();
     }
     $poleZ = null;
     $poleAngle = null;
     if ($this->lat->lo() + $this->lat->hi() < 0) {
         // South pole axis yields smaller cap.
         $poleZ = -1;
         $poleAngle = S2::M_PI_2 + $this->lat->hi();
     } else {
         $poleZ = 1;
         $poleAngle = S2::M_PI_2 - $this->lat->lo();
     }
     $poleCap = S2Cap::fromAxisAngle(new S2Point(0, 0, $poleZ), S1Angle::sradians($poleAngle));
     // For bounding rectangles that span 180 degrees or less in longitude, the
     // maximum cap size is achieved at one of the rectangle vertices. For
     // rectangles that are larger than 180 degrees, we punt and always return a
     // bounding cap centered at one of the two poles.
     $lngSpan = $this->lng->hi() - $this->lng->lo();
     if (S2::IEEEremainder($lngSpan, 2 * S2::M_PI) >= 0) {
         if ($lngSpan < 2 * S2::M_PI) {
             $midCap = S2Cap::fromAxisAngle($this->getCenter()->toPoint(), S1Angle::sradians(0));
             for ($k = 0; $k < 4; ++$k) {
                 $midCap = $midCap->addPoint($this->getVertex($k)->toPoint());
             }
             if ($midCap->height() < $poleCap->height()) {
                 return $midCap;
             }
         }
     }
     return $poleCap;
 }
 /**
  * Return the average area for cells at the given level.
  *#/
  * public static double averageArea(int level) {
  * return S2Projections.AVG_AREA.getValue(level);
  * }
  *
  * /**
  * Return the average area of cells at this level. This is accurate to within
  * a factor of 1.7 (for S2_QUADRATIC_PROJECTION) and is extremely cheap to
  * compute.
  *#/
  * public double averageArea() {
  * return averageArea(level);
  * }
  *
  * /**
  * Return the approximate area of this cell. This method is accurate to within
  * 3% percent for all cell sizes and accurate to within 0.1% for cells at
  * level 5 or higher (i.e. 300km square or smaller). It is moderately cheap to
  * compute.
  *#/
  * public double approxArea() {
  *
  * // All cells at the first two levels have the same area.
  * if (level < 2) {
  * return averageArea(level);
  * }
  *
  * // First, compute the approximate area of the cell when projected
  * // perpendicular to its normal. The cross product of its diagonals gives
  * // the normal, and the length of the normal is twice the projected area.
  * double flatArea = 0.5 * S2Point.crossProd(
  * S2Point.sub(getVertex(2), getVertex(0)), S2Point.sub(getVertex(3), getVertex(1))).norm();
  *
  * // Now, compensate for the curvature of the cell surface by pretending
  * // that the cell is shaped like a spherical cap. The ratio of the
  * // area of a spherical cap to the area of its projected disc turns out
  * // to be 2 / (1 + sqrt(1 - r*r)) where "r" is the radius of the disc.
  * // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
  * // Here we set Pi*r*r == flat_area to find the equivalent disc.
  * return flatArea * 2 / (1 + Math.sqrt(1 - Math.min(S2.M_1_PI * flatArea, 1.0)));
  * }
  *
  * /**
  * Return the area of this cell as accurately as possible. This method is more
  * expensive but it is accurate to 6 digits of precision even for leaf cells
  * (whose area is approximately 1e-18).
  *#/
  * public double exactArea() {
  * S2Point v0 = getVertex(0);
  * S2Point v1 = getVertex(1);
  * S2Point v2 = getVertex(2);
  * S2Point v3 = getVertex(3);
  * return S2.area(v0, v1, v2) + S2.area(v0, v2, v3);
  * }
  *
  * // //////////////////////////////////////////////////////////////////////
  * // S2Region interface (see {@code S2Region} for details):
  *
  * @Override
  * public S2Region clone() {
  * S2Cell clone = new S2Cell();
  * clone.face = this.face;
  * clone.level = this.level;
  * clone.orientation = this.orientation;
  * clone.uv = this.uv.clone();
  *
  * return clone;
  * }
  */
 public function getCapBound()
 {
     // Use the cell center in (u,v)-space as the cap axis. This vector is
     // very close to GetCenter() and faster to compute. Neither one of these
     // vectors yields the bounding cap with minimal surface area, but they
     // are both pretty close.
     //
     // It's possible to show that the two vertices that are furthest from
     // the (u,v)-origin never determine the maximum cap size (this is a
     // possible future optimization).
     $u = 0.5 * ($this->uv[0][0] + $this->uv[0][1]);
     $v = 0.5 * ($this->uv[1][0] + $this->uv[1][1]);
     $cap = S2Cap::fromAxisHeight(S2Point::normalize(S2Projections::faceUvToXyz($this->face, $u, $v)), 0);
     for ($k = 0; $k < 4; ++$k) {
         $cap = $cap->addPoint($this->getVertex($k));
     }
     return $cap;
 }